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ABSTRACT. This is a brief summary of recent examples of isotopically different symplec-
tic and Lagrangian surfaces representing a fixed homology class in a simply-connected
symplectic 4–manifold.

1. INTRODUCTION

In recent years there has been considerable activity that resulted in the construction of
connected symplectic (and more recently Lagrangian) surfaces which are different up to
smooth isotopy, but nonetheless represent the same homology class in a simply-connected
symplectic 4–manifold. The first of such examples were givenby R. Fintushel and R. Stern
[10] who utilized their link surgery construction [9] to obtain non-isotopic tori representing
certain multiples of the homology class of a generic fiber in the rational elliptic surface
E(1) ∼= CP

2#9CP
2 and n-fold fiber sumE(n) of E(1). They distinguished innitely

many of these tori by using the Seiberg-Witten invariants ofdouble covers of the ambient
4–manifold branched along these tori. Based on their techniques many more examples
were constructed in [3], [4], [5], [6], [21], [23] . All theseexamples are tori and the rst
homologous non-isotopic surfaces of higher genera are constructed in [14] (in certain 4–
manifolds which are not simply-connected, I. Smith constructed homologous, isotopically
different higher genus surfaces in [19]).

The interest in this subject mainly stems from the ever tempting comparison between the
complex and symplectic categories. A simply-connected complex surface always carries a
Kähler form hence it is, in particular, a symplectic 4–manifold. It is a classical fact that in a
simply-connected complex surface, two complex curves thatrepresent the same homology
class are smoothly isotopic. In fact there is reason to conjecture that inCP

2#nCP2 with
n < 9 (viewed as symplectic 4–manifolds) a similar uniqueness result holds. First of all,
the techniques used to produce infinitely many non-isotopichomologous tori mentioned
above do not work in this case since they depend on the existence of a symplectic torus
of self-intersection zero, andCP

2#nCP2 has not even a smoothly embedded such torus
in it. Moreover, in [17], using Gromovs compactness theoremand extending the results
of V. Shevchishin [16] and J.-C. Sikorav [18], B. Siebert andG. Tian proved that inCP

2,
any symplectic surface representingd[CP

1] for d ≤ 17 is smoothly isotopic to the unique
1
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complex curve in that homology class. They have similar partial results forCP
1-bundles

overCP
1 , i.e. CP

2#CP
2 andCP

1 × CP
1.

On the other hand, one might expect to have uniqueness for Lagrangian representatives
as the Lagrangian condition is a closed one like the complex one and unlike the symplectic
one, but this was proven to be false first by S. Vidussi in [22] and more counterexamples
followed [11], [8], [12], [15].

This note is an attempt to summarize the existence results inthe subject. We try to
emphasize only the main tools and ideas, and refer elsewherefor the details. In the rest of
this note the term 4–manifold refers to a compact, smooth andoriented 4–manifold. All
surfaces are assumed to be closed and connected.

2. PRELIMINARIES

2.1. Symplectic 4–manifolds, symplectic and Lagrangian submanifolds. A differential
2–formω on a 4–manifoldX is called a symplectic form if it is closed, i.e.dω = 0, and
non-degenerate, i.e.ω ∧ ω > 0. The manifoldX which carries such a symplectic form
is said to admit a symplectic structure and the pair(X, ω) is called a symplectic manifold.
We sometimes dropω from the notation and callX a symplectic manifold.

A 2–dimensional submanifoldΣ of X is called a symplectic submanifold ofX if the
symplectic formω restricts to a volume form onΣ. If ω vanishes onΣ, thenΣ is called a
Lagrangian submanifold ofX. An interesting observation of R. Gompf is that a Lagrangian
submanifoldΣ of (X, ω) is a symplectic submanifold of(X, ω′) for a perturbationω′ of ω

if Σ is homologically essential inX , i.e. [Σ] 6= 0 ∈ H2(X; Z).

2.2. Seiberg-Witten invariants. Seiberg-Witten invariants of a smooth 4–manifoldX are
integer-valued invariants defined on the set ofSpinc-structures ofX . Since this set could
be identified withH2(X; Z) in the absence of 2-torsion and since the Seiberg-Witten in-
variants of only finitely manySpinc-structures are nonzero whenb+(X) > 1, we can view
the Seiberg-Witten invariants ofX as a polynomial (or more precisely, as an element of the
group ringZ[H2(X; Z)]), for example, whenX is simply-connected withb+(X) > 1. In
that case, we writeSWX =

∑
g ag · g, where the Seiberg-Witten invariant of theSpinc-

structure that corresponds to the homology classg is equal toag.

2.3. Fintushel-Stern link surgery. In their seminal work [9], Fintushel and Stern intro-
duced a method to construct new 4–manifolds out of old ones byreplacing regular neigh-
borhoods of certain tori by circle times knot (or more generally link) complements. This
construction has many interesting features: under mild conditions the new manifold,XK ,
is homeomorphic to the old one,X; if we use a fibred knotK and a symplecticX , then
XK is also symplectic, etc. Moreover, the symplectic structure on the surgery manifold is
an extension of the natural symplectic form onNK = S1×(S3−νK) as the total space of a
fiber bundle overT 2 whenK is bred. This allows us to construct symplectic or Lagrangian
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surfaces inNK and consider them inXK . Genus-1 case can be made particularly efcient
by constructing toriTC as circle times a second knotC (seen as a loop) in the complement
of K. There are several advantages in this: one can read off the homology class[TC ] simply
from the linking number ofC with K, andTC is symplectic (resp. Lagrangian) whenever
C is transverse to (resp. lies in) a Seifert surface, i.e. a fiber of the fibration ofS3 − νK

overS1.
Another useful feature of Fintushel-Stern link surgery is the description of the Seiberg-

Witten polynomial ofXK in terms ofSWX and the Alexander polynomial ofK [9].

3. SUMMARY OF RESULTS

3.1. Symplectic tori. In this subsection we list the results on the existence of homologous
non-isotopic symplectic tori in symplectic 4–manifolds. In fact, in all of the following
cases we get an innite family of such examples. In some of these cases it is possible to
conclude that the homologous tori constructed are inequivalent under diffeomorphisms of
the ambient 4manifold. Moreover, some of them have complements with nonisomorphic
fundamental groups (see [7]).

One may think that there are different conditions that the tori T andTi should satisfy
in the following statements, but in fact the prototype whichsatises all these conditions is
a regular fiber in the elliptic surfaceE(n). We will emphasize the interpretation of each
result in this prototypical case.

Theorem 1 (Fintushel-Stern [10], [12]). Let T be a c-embedded symplectic torus in a
simply-connected 4–manifoldX . The for eachq ≥ 2 there exists an infinite family of
mutually non-isotopic symplectic tori representing the homology class2q[T ].

A symplectically embedded torus is calledc-embedded if it has self-intersection 0 and
has a pair of simple closed curves which generate its first homology and bound self-
intersection−1 disks in the ambient 4–manifold. Again, a regular fiberF in E(n) is
the prototype we should keep in mind. The theorem above implies the existence of an infi-
nite family of mutually non-isotopic symplectic tori in each even multiple of the fiber class
except for2[F ]. The following result generalizes the elliptic surface case to every positive
multiple of the fiber class for mostE(n).

Theorem 2(Vidussi [21]). For everyq ≥ 1 andn ≥ 3, there exists an infinite family of mu-
tually non-isotopic symplectic tori representing the homology classq[F ] ∈ H2(E(n); Z).

Theorem 3 (Etgü-Park [3]). Let T be an essentially embedded symplectic 2-torus in a
symplectic 4–manifoldX with b+

2 (X) > 1. If [T ] ∈ H2(X; Z) is primitive,[T ]2 = 0, and
H1(X − νT ; Z) = 0. Then for any integerq ≥ 3, there exists an infinite family of mutually
non-isotopic symplectic tori representing the homology classq[T ].
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The theorem above together with the corollary below almost ends the story in the case
of positive multiples of the ber class inE(n). There is only the ber class inE(2) left, and
most probably there is an infinite family of non-isotopic symplectic tori representing it, too.

Theorem 4(Etgü-Park [6], Park-Vidussi [15]). LetT be a symplectic 2-torus in a symplec-
tic 4–manifoldX. Suppose that[T ] ∈ H2(X; Z) is primitive,[T ]2 = 0, and thatT lies in a
fishtail neighborhood. Ifb+

2 (X) = 1, then we also assume that the Seiberg-Witten invariant
of X − νT is nontrivial and a finite sum. Then there exists an infinite family of mutually
non-isotopic symplectic tori inXp representing the homology classq[Tp] ∈ H2(Xp; Z) for
everyp > 1 andq ≥ 1.

HereXp stands for the 4–manifold obtained by applying a generalized logarithmic trans-
form of multiplicity p to X alongT . Using the fact that no logarithmic transform onE(1)
along a regular fibre changes its diffeomorphism type, we getthe following corollary.

Corollary 5 (Etgü-Park [6], Park-Vidussi [15]). For a suitable choice of a symplectic form
onE(1), there exists an infinite family of mutually non-isotopic symplectic tori representing
q[F ] for eachq ≥ 1.

Theorem 6(Etgü-Park [4]). LetTi be a symplectically embedded 2-torus in a closed sym-
plectic 4–manifoldXi with b+

2 (Xi) > 1, [Ti]
2 = 0 and H1(Xi − νTi; Z) = 0, for each

i ∈ {1, 2}, and letX = X1#T1=T2
X2 be the symplectic fiber sum ofX1 and X2 along

T1 and T2. If [T ] and [R] are the homology classes ofT1 = T2 and a rim torus in
X , respectively, then for each pair of positive integers(q, m) 6= (1, 1) there exists an
infinite family of mutually non-isotopic symplectic tori representing the homology class
q[T ] + m[R] ∈ H2(X; Z).

As usual we can apply the theorem above to the elliptic surface case: For any pair of
positive integers(q, m) 6= (1, 1) there exists an innite family of mutually non-isotopic
symplectic tori representing the homology classq[F ] + m[R] of an elliptic surfaceE(2),
where[R] is the homology class of a rim torus.

Theorem 7 (Vidussi [23], Etgü-Park [5]). Let T be a symplectic 2-torus in a symplectic
4–manifoldX with primitive homology class,[T ]2 = 0, andH1(X − νT ; Z) = 0. Also
assume that the Seiberg-Witten polynomial ofX − νT is a nontrivial finite sum in case
b+

2 (X) = 1. Then there exists an infinite family of mutually non-isotopic symplectic tori in
XK representing[T ] ∈ H2(XK ; Z) for any nontrivial fibred knotK in S3.

The examples that lead to the theorem above are particularlyinteresting, especially when
X = E(n), as it can be seen in the following result. Moreover, these tori are used to
construct the first examples of homologous non-isotopic symplectic surface of higher genus
in simply-connected 4–manifolds as explained in Subsection 3.3.
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Theorem 8 (Etgü-Park [7]). If K is a nontrivial fibred knot inS3, then there exists an
infinite family of homologous symplectic tori inE(n)K whose complements have mutually
nonisomorphic fundamental groups.

In contrast, the complements of the homologous (non-isotopic) tori constructed in [3],
[4] and [6] have isomorphic fundamental groups [7].

3.2. Lagrangian tori.

Theorem 9(Vidussi [22]). LetK be a knot inS3 which has a trefoil summand. There exists
a primitive homology class[R] ∈ H2(E(n)K ; Z) such thatq[R] is represented by infinitely
many mutually non-isotopic Lagrangian tori for eachq ≥ 1 andn ≥ 2.

In [1], D. Auckly showed that in caseK is the sum of the trefoil knot with its reection,
the complements of the non-isotopic homologous Lagrangiantori constructed by Vidussi
have nonisomorphic fundamental groups.

Fintushel and Stern generalized Vidussi’s result to obtainthe following results.

Theorem 10(Fintushel-Stern [11]). Let X be a symplectic 4–manifold withb+

2 (X) > 1
which contains a symplectic torus of self-intersection 0 ina fishtail neighborhood. For
each nontrivial fibred knotK, XK contains an infinite family of nullhomologous mutually
non-isotopic Lagrangian tori.

Theorem 11(Fintushel-Stern [11]). Let Xi be a symplectic 4–manifold which contains a
symplectic torusTi of self-intersection 0 for eachi = 1, 2 and letT1 be embedded in a
fishtail neighborhood. For each nontrivial fibred knotK, XK contains an infinite family
of mutually non-isotopic Lagrangian tori representing a primitive homology class, where
X = X1#T1=T2

X2.

The Lagrangian tori constructed to prove the following theorem are distinguished by the
fundamental groups of their complements.

Theorem 12 (Etgü-McKinnon-Park [8]). Let K be a fibred knot inS3 whose Alexander
polynomial∆K(t) has an irreducible factor none of whose roots is a root of unity and letX
be a symplectic 4–manifold with a symplectically embedded torusT of self-intersection 0.
If π1(X−νT ) = 1, then there are infinitely many nullhomologous non-isotopic Lagrangian
tori in XK .

The Lagrangian tori in [15] can be distinguished by using Seiberg-Witten theory but not
by the fundamental groups of their complements.

Theorem 13(Park-Vidussi [15]). LetT be a symplectic 2-torus in a symplectic 4–manifold
X. Suppose that[T ] ∈ H2(X; Z) is primitive, [T ]2 = 0, and thatT lies in a fishtail
neighborhood. Ifb+

2 (X) = 1, then we also assume that the Seiberg-Witten invariant of
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X − νT is nontrivial and a finite sum. Then there exists an infinite family of mutually
non-isotopic Lagrangian tori inXp representing the homology classq[Tp] ∈ H2(Xp; Z) for
everyp > 1 andq ≥ 1.

In the multiples of the ber class inE(1) one can find Lagrangian tori which are equivalent
under the diffeomorphisms ofE(1), but smoothly non-isotopic.

Corollary 14 (Park-Vidussi [15]). For a suitable choice of a symplectic form onE(1),
there exists an innite family of mutually non-isotopic Lagrangian tori representingq[F ] ∈
H2(E(1); Z) for eachq ≥ 1.

3.3. Symplectic surfaces of higher genus.The only examples of higher genus homol-
ogous mutually non-isotopic surfaces symplectically embedded in a simply-connected 4–
manifold are constructed by Park, Poddar and Vidussi. In non-simply-connected 4–manifolds,
we also have the examples of Smith [19].

Theorem 15 (Park-Poddar-Vidussi [14]). For each integerq ≥ 2, there exists a simply-
connected symplectic 4–manifold which contains infinitelymany homologous mutually
non-isotopic symplectic surfaces of genusg.

4. CONSTRUCTIONS OF SYMPECTIC SURFACES

There are several different constructions of non-isotopichomologous symplectic sur-
faces in simply-connected 4–manifolds. Even though these have certain common features,
each one of them has a different aspect. We start with the general framework and mention
some of the differences along the way. Different techniquesused to distinguish homolo-
gous tori are explained in Section 6.

4.1. Constructions of symplectic tori. We start with a closed symplectic 4–manifoldX

with a self-intersection 0 symplectic torusT embedded in it. We almost always assume that
the homology class[T ] is primitive in H2(X; Z) andH1(X − νT ; Z) = 0. For technical
reasons in Seiberg-Witten theory, in caseb+

2 (X) = 1 it may also be necessary to assume
thatSWX−νT is non-trivial and a finite sum. The elliptic surfaceE(n) and a generic fiber
of it are the ideal candidates frequently used for the roles of X andT , respectively.

At another part of this construction site we have a braidβ . In the simplest case (e.g.
as in [3]), the closureB of β is a knot and we consider its closure inside the complement
of its axisA. SinceA is an unknot, its complement isS1 × D2 which trivially fibers over
the circle. A fiber of this fibration is the obvious disk that isbounded byA. When we
multiply this whole picture by another circle we obtain a disk bundle over a torusNA =
S1 × (S3 − νA) which admits a natural symplectic form which is essentiallythe sum of
symplectic forms on the fiber and the base [20]. Hence the simple fact thatB is transverse
to the disk bounded byA implies thatTB = S1 × B is a symplectic torus inNA. To
get more general results we may use a braid which closes to a multi-component link and
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FIGURE 1. Braidβp,q used in [3]

consider one of these components in the complement of the rest of them union the axisA
(see [4],[5],[6]) and we get a symplectic torus after crossing the whole picture by a circle.

Once we obtain a symplectic torus as above inside, for example, NA which is homo-
logically the same as a regular neighborhood of the self-intersection 0 torusT in X, we
take such a regular neighborhood out ofX and glueNA instead of it to obtain a closed
4–manifold. In the more complicated cases, since the initial symplectic torus we construct
is in a 4–manifold, sayNL, with more than one boundary component, gluingNL to X−νT

produces a 4–manifold with boundary components diffeomorphic toT 3. Depending on the
case, we may choose to close each of these boundary components byT 2 ×D2, E(1)− νF

or S1 × (S3νK) for a specific fibred knotK. No matter how we close the boundary, we
always have to make sure that we respect the symplectic structures on all pieces. That way
we obtain symplectic tori in the targeted closed 4–manifold.

The homology class of the resulting torus depends on the linking numbers of the compo-
nents of the closure of the braidβ. The way we glue our pieces makes some of this linking
data irrelevant, hence one can obtain symplectic tori representing a fixed homology class
in many different ways. Of course this is not enough to claim that these homologous tori
are non-isotopic and the methods used to distinguish them isthe subject of Section 6.

4.2. Luttinger surgery and singular plane curves. A small neighborhood of a Lagrangian
torus in a symplectic 4–manifold can be removed and replacedby a standardT 2×D2 sym-
plectically. In some cases, i.e. when the gluing is made using certain diffeomorphisms, this
operation can be considered as a 4–dimensional Dehn surgery, called Luttinger surgery.
B. Moishezon’s construction of singular curves inCP

2 is discussed through the eyes of
Luttinger surgery in [2]. Both this construction and the construction of symplectic tori
summarized above can be seen as braiding of many copies of disjoint symplectic subman-
ifolds and they are related based on the fact that any symplectic 4–manifold is a cover of
CP

2 branched along a singular curve.
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4.3. Construction of symplectic surfaces of higher genera.The first examples of ho-
mologous non-isotopic higher genus symplectic surfaces ina simply-connected 4–manifold
are given in [14]. This construction uses a certain class of homologous symplectic tori, con-
structed in [5] (also see [23]) in the knot surgery manifoldE(2)K , which were shown to
have complements with non-isomorphic fundamental groups [7]. The diversity encoded in
these fundamental groups survives (at least whenK is a hyperbolic knot) if one uses Parks
doubling construction [13] and two copies of a torus representing g times the fiber class
in E(2)K to obtain a symplectic surface of genusg + 1 in the double ofE(2)K , i.e. the
fiber sum of two copies ofE(2)K along the surfaceΣ obtained from the union of a regular
fiber away from the surgery region inE(2) and a pseudo-section which is a minimal genus
Seifert surface of K capped off by the punctured section ofE(2). Since the torus inE(2)K

intersects withΣ at g points, after the fiber sum we have ag-punctured torus in each piece
and the union of these two tori is the desired genusg + 1 surface.

5. CONSTRUCTION OFLAGRANGIAN TORI

5.1. Constructions of nullhomologous Lagrangian tori. The rst examples of homolo-
gous non-isotopic Lagrangian tori in a 4–manifold were constructed by Vidussi in [22].
These examples are in knot surgery manifolds likeE(2)K . The way they are constructed
is very similar to the construction of symplectic tori above. The main difference which
makes the tori Lagrangian, as opposed to symplectic, is thatthe simple closed curves that
give these tori after multiplication by the trivialS1 factor inS1 × (S3 − νK) are not trans-
verse to but embedded in a fiber of the fibration of the complement of the fibred knotK
over the circle. It should be noted that these tori are necessarily nullhomologous.

After these first examples, and inspired by them, many other examples are given in more
general classes of 4–manifolds (see [11],[8], [12], [15]).

5.2. Circle sum construction and essential tori. In [11], generalizing a technique used
by Vidussi [22], Fintushel and Stern developed a tool calledcircle sum that enables one to
construct homologically essential Lagrangian tori by using the nullhomologous Lagrangian
tori above. This is done by xing an essential Lagrangian torus Tµ = S1 × µ in the gluing
region of the knot surgery and adding this loopµ to different simple closed curves in the
Seifert surface inS3 − νK before multiplying by the trivial circle factor as above. These
new tori represent the same homology class asTµ.

6. TOOLS TO DISTINGUISH HOMOLOGOUS SYMPLECTIC SURFACES

6.1. Seiberg-Witten invariants of branched covers.One way to distinguish the homol-
ogous symplectic tori is to consider the double branched covers of the ambient manifold
branched along the tori. This is exactly how it is done in [10]. These covers are distin-
guished by using their Seiberg-Witten invariants which canbe calculated after observing
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that the covers are link surgery manifolds, and the diffeomorphism type of the cover de-
pends only on the isotopy class of the branch tori. One minor disadvantage of this technique
is the restriction to tori which represent even homology classes.

6.2. Seiberg-Witten invariants of fiber sums. To distinguish the homologous symplec-
tic tori constructed in the general framework mentioned in this note one can also use the
Seiberg-Witten invariants of the fiber sum of the ambient 4–manifold withE(1) along the
tori on one side and a generic fiber on theE(1) side (see [21], [3], [4], [23], [5], [6]). The
effectiveness of this method lies within the fact that such afiber sum could also be inter-
preted as a link surgery manifold. Hence the calculation of the Seiberg-Witten invariants
boils down to the calculation of the multivariable Alexander polynomial of certain links.
Once the difference of these invariants is established, thenon-isotopy of the tori could be
claimed as the diffeomorphism type of the fiber sum depends only on the isotopy type of
these tori.

6.3. Fundamental group of the complement.As another method of distinguishing ho-
mologous symplectic surfaces one can try to use the fundamental group of the complement
(see [7] and [14]). In the examples on which this method is applied one needs only the
Wirtinger presentation of link components and the Seifert-van Kampen theorem to calcu-
late the fundamental groups. In general, complements of homologous non-isotopic sym-
plectic tori do not necessarily have nonisomorphic fundamental groups (e.g. the examples
in [3], [4], [6]). Even if they do, showing that two groups arenot isomorphic is usually a
challenging task. As it is demonstrated in [7], techniques from the theory of hyperbolic 3–
manifolds or gauge theory (through its relationship with the SU(2)-representations of the
fundamental groups of 3–manifolds) can be used to show the existence of innitely many
homologous symplectic tori the complements of which have nonisomorphic fundamental
groups. Moreover, the non-isotopy of higher genus surfacesobtained in [14] is established
by extending the results in [7]. The fundamental group of thecomplement is especially sig-
nicant in the higher genus case since it is the only known way to distinguish homologous
symplectic surfaces of genus> 1.

7. TOOLS TO DISTINGUISH HOMOLOGOUSLAGRANGIAN SURAFCES

7.1. Seiberg-Witten invariants of fiber sums. Seiberg-Witten invariants of the fiber sum
of E(2)K andE(1) along Lagrangian tori and a regular fiber is used to distinguish the tori
in [22]. This technique is similar to the analogous computations for symplectic tori.

7.2. Lagrangian framing defect. Fintushel and Stern define the Lagrangian framing de-
fect (see [11], [12]) of a nullhomologous Lagrangian torus and show that it is not only
particularly easy to calculate for the tori constructed along the ideas in [22] but it is in fact
a smooth isotopy invariant by demonstrating its relationship with Seiberg-Witten theory.
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This defect is an integer invariant which is essentially thedifference between the nullho-
mologous and Lagrangian framings of the torus. Another nicefeature of this invariant is
that it is compatible with the circle sum construction, i.e.it can be used to distinguished
essential tori obtained by circle sum.

7.3. Fundamental group of the complement.As it is demonstrated in [1] and [8], certain
classes of homologous Lagrangian tori have complements with nonisomorphic fundamen-
tal groups. Again, different techniques can be used to show the diversity of these groups.
For example, in [8], the Alexander ideals of fundamental groups of certain homologous
Lagrangian tori in specic knot surgery manifolds lead to an unexpected connection with
algebraic number theory using which one can prove that the groups in question are differ-
ent at least when the Alexander polynomial of the knot involved in the surgery has a root
which is not a root of unity.

8. CONCLUSION

Although there has been extensive research on homologous and non-isotopic symplectic
or Lagrangian surfaces in 4–manifolds there are still more questions waiting to be answered
in this area. For example, there is the property of zero self-intersection that is shared by all
the surfaces constructed (symplectic or Lagrangian, torusor higher genus). This may seem
to be a technical point, yet there are no examples in non-zeroself-intersection homology
classes. Also the variety in genus-1 examples is yet to be seen in higher genus. Of course
this could be explained by the ineffectiveness of Seiberg-Witten theory, as it is used in this
subject, on distinguishing higher genus surfaces up to isotopy. Note that, since the normal
bundle of a Lagrangian surface is isomorphic to its cotangent bundle, the self-intersection
is determined by the genus, hence higher genus Lagrangian surfaces necessarily represent
homology classes of positive square.
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