SYMPLETIC AND LAGRANGIAN SURFACES IN 4-MANIFOLDS
TOLGA ETGU

ABSTRACT. Thisis a brief summary of recent examples of isotopicaiffiecent symplec-
tic and Lagrangian surfaces representing a fixed homolaggsah a simply-connected
symplectic 4—manifold.

1. INTRODUCTION

In recent years there has been considerable activity teattegl in the construction of
connected symplectic (and more recently Lagrangian) sesfavhich are different up to
smooth isotopy, but nonetheless represent the same hoyndbss in a simply-connected
symplectic 4—manifold. The first of such examples were giweR. Fintushel and R. Stern
[20] who utilized their link surgery constructionl[9] to @t non-isotopic tori representing
certain multiples of the homology class of a generic fibernia tational elliptic surface
E(1) = CP?’#9CP? and n-fold fiber sumE(n) of E(1). They distinguished innitely
many of these tori by using the Seiberg-Witten invariantdaible covers of the ambient
4—manifold branched along these tori. Based on their tecles many more examples
were constructed ir [3]/4]/]5],16],121],123] . All thesexamples are tori and the rst
homologous non-isotopic surfaces of higher genera aretrwmtad in [14] (in certain 4—
manifolds which are not simply-connected, I. Smith cort#d homologous, isotopically
different higher genus surfaces in [19]).

The interest in this subject mainly stems from the ever tamygtomparison between the
complex and symplectic categories. A simply-connectedmersurface always carries a
Kahler form hence itis, in particular, a symplectic 4—nfaldl. It is a classical fact thatin a
simply-connected complex surface, two complex curvesrdpaesent the same homology
class are smoothly isotopic. In fact there is reason to ctuje that inCP*#nCP? with
n < 9 (viewed as symplectic 4—manifolds) a similar uniqguenessltdolds. First of all,
the techniques used to produce infinitely many non-isotbpimologous tori mentioned
above do not work in this case since they depend on the egistaina symplectic torus
of self-intersection zero, an@P?#nCP? has not even a smoothly embedded such torus
in it. Moreover, in [17], using Gromovs compactness theoeemd extending the results
of V. Shevchishin[[16] and J.-C. Sikorav ]18], B. Siebert &dTian proved that itCP?,

any symplectic surface representii@P'] for d < 17 is smoothly isotopic to the unique
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complex curve in that homology class. They have similariglarésults forCP'-bundles
overCP' , i.e. CP*#CP? andCP' x CP'.

On the other hand, one might expect to have uniqueness foahg@n representatives
as the Lagrangian condition is a closed one like the compiexamd unlike the symplectic
one, but this was proven to be false first by S. Vidusslin [28] enore counterexamples
followed [11], [€], [12], [15].

This note is an attempt to summarize the existence resuliseirsubject. We try to
emphasize only the main tools and ideas, and refer elseitretiee details. In the rest of
this note the term 4—manifold refers to a compact, smoothoaighted 4—manifold. All
surfaces are assumed to be closed and connected.

2. PRELIMINARIES

2.1. Symplectic 4—manifolds, symplectic and Lagrangian submafolds. A differential
2—formw on a 4—manifoldX is called a symplectic form if it is closed, i.dw = 0, and
non-degenerate, i.ev A w > 0. The manifoldX which carries such a symplectic form
is said to admit a symplectic structure and the pairw) is called a symplectic manifold.
We sometimes drop from the notation and calk’ a symplectic manifold.

A 2—dimensional submanifol®l of X is called a symplectic submanifold of if the
symplectic formw restricts to a volume form oh. If w vanishes ort, thenX is called a
Lagrangian submanifold of . Aninteresting observation of R. Gompfis that a Lagrangian
submanifold® of (X, w) is a symplectic submanifold ¢fX, ') for a perturbation,” of w
if X is homologically essential iiX , i.e. [X] # 0 € Hy(X; Z).

2.2. Seiberg-Witten invariants. Seiberg-Witten invariants of a smooth 4—manifaicare
integer-valued invariants defined on the sebpin -structures ofX . Since this set could

be identified withH,(X; Z) in the absence of 2-torsion and since the Seiberg-Witten in-
variants of only finitely manyspin.-structures are nonzero whén(X) > 1, we can view

the Seiberg-Witten invariants &f as a polynomial (or more precisely, as an element of the
group ringZ[H,(X; Z)]), for example, wherX is simply-connected with, (X) > 1. In

that case, we writ§ Wy = > ;49 * g, Where the Seiberg-Witten invariant of tiin.-
structure that corresponds to the homology classequal to,.

2.3. Fintushel-Stern link surgery. In their seminal workl[9], Fintushel and Stern intro-
duced a method to construct new 4—manifolds out of old onagjbhacing regular neigh-
borhoods of certain tori by circle times knot (or more geftigidank) complements. This
construction has many interesting features: under mildlicmms the new manifoldX .,

is homeomorphic to the old ong]; if we use a fibred knofl and a symplectic , then
X is also symplectic, etc. Moreover, the symplectic struetun the surgery manifold is
an extension of the natural symplectic form®g = S* x (S®—vK) as the total space of a
fiber bundle ovel™? whenK is bred. This allows us to construct symplectic or Lagrangia
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surfaces inVx and consider them iX ;. . Genus-1 case can be made particularly efcient
by constructing torii > as circle times a second knGt(seen as a loop) in the complement
of K. There are several advantages in this: one can read off thelbgy class$7¢| simply
from the linking number of” with K, and7 is symplectic (resp. Lagrangian) whenever
C'is transverse to (resp. lies in) a Seifert surface, i.e. a tbéhe fibration ofS® — vK
overS?.

Another useful feature of Fintushel-Stern link surgeryhis tlescription of the Seiberg-
Witten polynomial ofX i in terms ofSWWx and the Alexander polynomial a@f [9].

3. SUMMARY OF RESULTS

3.1. Symplectic tori. In this subsection we list the results on the existence ofdiogous
non-isotopic symplectic tori in symplectic 4—manifoldsa fact, in all of the following
cases we get an innite family of such examples. In some otthases it is possible to
conclude that the homologous tori constructed are inetgnvander diffeomorphisms of
the ambient 4manifold. Moreover, some of them have comphesngith nonisomorphic
fundamental groups (seé [7]).

One may think that there are different conditions that thie Toand 7; should satisfy
in the following statements, but in fact the prototype whsetises all these conditions is
a regular fiber in the elliptic surfacE(n). We will emphasize the interpretation of each
result in this prototypical case.

Theorem 1 (Fintushel-Stern[[10],[ [12])Let T" be ac-embedded symplectic torus in a
simply-connected 4—manifold . The for each; > 2 there exists an infinite family of
mutually non-isotopic symplectic tori representing thenotogy clas2q|[T].

A symplectically embedded torus is calleembedded if it has self-intersection 0 and
has a pair of simple closed curves which generate its firstahogy and bound self-
intersection—1 disks in the ambient 4—manifold. Again, a regular filierin E(n) is
the prototype we should keep in mind. The theorem above @spiie existence of an infi-
nite family of mutually non-isotopic symplectic tori in daeven multiple of the fiber class
except for2[F']. The following result generalizes the elliptic surfaceectsevery positive
multiple of the fiber class for mogi(n).

Theorem 2(Vidussi [21]) For everyq > 1 andn > 3, there exists an infinite family of mu-
tually non-isotopic symplectic tori representing the hdogy classy[F| € Hy(E(n); Z).

Theorem 3 (Etgu-Park [[3]) Let T" be an essentially embedded symplectic 2-torus in a
symplectic 4-manifol& with b5 (X) > 1. If [T] € Hy(X;Z) is primitive,[T]* = 0, and
HY(X —vT;Z) = 0. Then for any integeg > 3, there exists an infinite family of mutually
non-isotopic symplectic tori representing the homologgs|T].
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The theorem above together with the corollary below almodséhe story in the case
of positive multiples of the ber class #(n). There is only the ber class #(2) left, and
most probably there is an infinite family of non-isotopic glettic tori representing it, too.

Theorem 4(Etgu-Park(|6], Park-Vidussi[15])Let T be a symplectic 2-torus in a symplec-
tic 4—manifoldX . Suppose thdfl'| € Hy(X; Z) is primitive,[T]* = 0, and thatT’ lies in a
fishtail neighborhood. If; (X) = 1, then we also assume that the Seiberg-Witten invariant
of X — vT is nontrivial and a finite sum. Then there exists an infinitaifg of mutually
non-isotopic symplectic tori itX,, representing the homology clagd,| € H2(X,;Z) for
everyp > landqg > 1.

Here X, stands for the 4—manifold obtained by applying a generaliagarithmic trans-
form of multiplicity p to X along7'. Using the fact that no logarithmic transform éii1)
along a regular fibre changes its diffeomorphism type, welgefollowing corollary.

Corollary 5 (Etgu-Parkll6], Park-Vidussi[15])For a suitable choice of a symplectic form
on E(1), there exists an infinite family of mutually non-isotopimgjectic tori representing
q|F] for eachg > 1.

Theorem 6 (Etgu-Park([4]) LetT; be a symplectically embedded 2-torus in a closed sym-
plectic 4—manifoldX; with b5 (X;) > 1, [TI}]* = 0 and H'(X; — vT};Z) = 0, for each

i € {1,2}, and letX = X;#r,_1, X5 be the symplectic fiber sum af; and X, along

T, and 75. If [T] and [R] are the homology classes @ = 7, and a rim torus in

X , respectively, then for each pair of positive integéysm) # (1,1) there exists an
infinite family of mutually non-isotopic symplectic toripresenting the homology class
q[T] +m[R] € Hy(X;Z).

As usual we can apply the theorem above to the elliptic sartase: For any pair of
positive integergq, m) # (1,1) there exists an innite family of mutually non-isotopic
symplectic tori representing the homology clasg| + m[R] of an elliptic surfaceF(2),
where|R] is the homology class of a rim torus.

Theorem 7 (Vidussi [23], Etgu-Parkl]5]) Let T" be a symplectic 2-torus in a symplectic
4—manifoldX with primitive homology clas§7]? = 0, and H*(X — vT;Z) = 0. Also
assume that the Seiberg-Witten polynomialXof- »7" is a nontrivial finite sum in case
by (X) = 1. Then there exists an infinite family of mutually non-isat@ymplectic tori in
Xk representingT’] € Ho(Xg; Z) for any nontrivial fibred knofs in S3.

The examples that lead to the theorem above are particutdelesting, especially when
X = E(n), as it can be seen in the following result. Moreover, theseai@ used to
construct the first examples of homologous non-isotopigdgatic surface of higher genus
in simply-connected 4—manifolds as explained in Subse[S18.
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Theorem 8 (Etgu-Park [[7]) If K is a nontrivial fibred knot inS3, then there exists an
infinite family of homologous symplectic tori B\n) x whose complements have mutually
nonisomorphic fundamental groups.

In contrast, the complements of the homologous (non-isoxapri constructed in([3],
[4] and [6] have isomorphic fundamental groups [7].

3.2. Lagrangian tori.

Theorem 9(Vidussi [22]). Let K be a knot inS® which has a trefoil summand. There exists
a primitive homology clasg?| € Hy(E(n)k; Z) such thaty|R] is represented by infinitely
many mutually non-isotopic Lagrangian tori for eagh> 1 andn > 2.

In [A], D. Auckly showed that in casf is the sum of the trefoil knot with its reection,
the complements of the non-isotopic homologous Lagrangiarconstructed by Vidussi
have nonisomorphic fundamental groups.

Fintushel and Stern generalized Vidussi’s result to olttaérfollowing results.

Theorem 10(Fintushel-Stern[11])Let X be a symplectic 4—manifold withj (X) > 1
which contains a symplectic torus of self-intersection @ ifishtail neighborhood. For
each nontrivial fibred knof(, X, contains an infinite family of nullhomologous mutually
non-isotopic Lagrangian tori.

Theorem 11(Fintushel-Stern [11])Let X; be a symplectic 4—manifold which contains a
symplectic torug/; of self-intersection O for each= 1,2 and let7; be embedded in a
fishtail neighborhood. For each nontrivial fibred knat, X contains an infinite family
of mutually non-isotopic Lagrangian tori representing arpitive homology class, where
X = Xi#r,-n,Xs.

The Lagrangian tori constructed to prove the following tie@o are distinguished by the
fundamental groups of their complements.

Theorem 12 (Etgui-McKinnon-Park[[8]) Let K be a fibred knot inS® whose Alexander
polynomialAk () has an irreducible factor none of whose roots is a root ofyaitd letX
be a symplectic 4-manifold with a symplectically embeddagstl” of self-intersection O.
If 7, (X —vT') = 1, then there are infinitely many nullhomologous non-isatdpigrangian
toriin Xg.

The Lagrangian tori in [15] can be distinguished by usind8gj-Witten theory but not
by the fundamental groups of their complements.

Theorem 13(Park-Vidussil[15]) Let7 be a symplectic 2-torus in a symplectic 4—manifold
X. Suppose thall'] € H,(X;Z) is primitive, [T]> = 0, and thatT lies in a fishtail
neighborhood. 1B (X) = 1, then we also assume that the Seiberg-Witten invariant of
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X — T is nontrivial and a finite sum. Then there exists an infiniteifg of mutually
non-isotopic Lagrangian tori itX,, representing the homology clagd},] € H»(X,; Z) for
everyp > 1l andq > 1.

In the multiples of the ber class ii(1) one can find Lagrangian tori which are equivalent
under the diffeomorphisms df(1), but smoothly non-isotopic.

Corollary 14 (Park-Vidussil[15]) For a suitable choice of a symplectic form @#(1),
there exists an innite family of mutually non-isotopic Laggian tori representing[F] €
Hy(E(1);Z) for eachq > 1.

3.3. Symplectic surfaces of higher genusThe only examples of higher genus homol-
ogous mutually non-isotopic surfaces symplectically edaeel in a simply-connected 4—
manifold are constructed by Park, Poddar and Vidussi. Insioply-connected 4—manifolds,
we also have the examples of Smithi[19].

Theorem 15 (Park-Poddar-Vidussl[14])For each integely > 2, there exists a simply-
connected symplectic 4—manifold which contains infinitagny homologous mutually
non-isotopic symplectic surfaces of genus

4. CONSTRUCTIONS OF SYMPECTIC SURFACES

There are several different constructions of non-isottywimologous symplectic sur-
faces in simply-connected 4—-manifolds. Even though thase bertain common features,
each one of them has a different aspect. We start with thergleinemework and mention
some of the differences along the way. Different technigugesd to distinguish homolo-
gous tori are explained in Sectibh 6.

4.1. Constructions of symplectic tori. We start with a closed symplectic 4—manifold
with a self-intersection 0 symplectic toriilsembedded in it. We almost always assume that
the homology clas§r] is primitive in Hy(X;Z) and H'(X — vT;Z) = 0. For technical
reasons in Seiberg-Witten theory, in cds€X) = 1 it may also be necessary to assume
that SWx _,r is non-trivial and a finite sum. The elliptic surfaé&n) and a generic fiber

of it are the ideal candidates frequently used for the role¥ andT’, respectively.

At another part of this construction site we have a braid In the simplest case (e.g.
as in [3]), the closurds of 3 is a knot and we consider its closure inside the complement
of its axis A. SinceA is an unknot, its complement &' x D? which trivially fibers over
the circle. A fiber of this fibration is the obvious disk thatbsunded byA. When we
multiply this whole picture by another circle we obtain akdmindle over a toru&v, =
St x (8% — vA) which admits a natural symplectic form which is essentigily sum of
symplectic forms on the fiber and the base [20]. Hence thelsifapt thatB is transverse
to the disk bounded byl implies thatTs = S' x B is a symplectic torus inV,. To
get more general results we may use a braid which closes tdtaaomponent link and
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FIGURE 1. Braidg,, used in[3]

consider one of these components in the complement of thefrédsem union the axis!
(seell4]15],16]) and we get a symplectic torus after crongghe whole picture by a circle.

Once we obtain a symplectic torus as above inside, for examy{ which is homo-
logically the same as a regular neighborhood of the sedirgeiction O torug™ in X, we
take such a regular neighborhood out’fand glueN, instead of it to obtain a closed
4—manifold. In the more complicated cases, since the Isyiaplectic torus we construct
is in a 4—manifold, say;,, with more than one boundary component, gluvgto X —vT
produces a 4-manifold with boundary components diffeotmiorim 7°3. Depending on the
case, we may choose to close each of these boundary comptwéritx D?, E(1) — vF
or S x (S3vK) for a specific fibred knofX. No matter how we close the boundary, we
always have to make sure that we respect the symplectidstesoon all pieces. That way
we obtain symplectic tori in the targeted closed 4—manifold

The homology class of the resulting torus depends on theinkumbers of the compo-
nents of the closure of the braid The way we glue our pieces makes some of this linking
data irrelevant, hence one can obtain symplectic tori ssmeng a fixed homology class
in many different ways. Of course this is not enough to cldiat these homologous tori
are non-isotopic and the methods used to distinguish théie isubject of Sectidd 6.

4.2. Luttinger surgery and singular plane curves. A small neighborhood of a Lagrangian
torus in a symplectic 4—manifold can be removed and replbgedstandard™ x D? sym-
plectically. In some cases, i.e. when the gluing is madegusantain diffeomorphisms, this
operation can be considered as a 4—dimensional Dehn sugdigd Luttinger surgery.
B. Moishezon’s construction of singular curves@iP? is discussed through the eyes of
Luttinger surgery inlI2]. Both this construction and the staction of symplectic tori
summarized above can be seen as braiding of many copiegahtisymplectic subman-
ifolds and they are related based on the fact that any symipkeemanifold is a cover of
CP? branched along a singular curve.
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4.3. Construction of symplectic surfaces of higher generaThe first examples of ho-
mologous non-isotopic higher genus symplectic surfacasimply-connected 4—manifold
are given in[[14]. This construction uses a certain clas®ofdlogous symplectic tori, con-
structed in[[5] (also seé&[23]) in the knot surgery manifél@)x , which were shown to
have complements with non-isomorphic fundamental gradpsTihe diversity encoded in
these fundamental groups survives (at least wikiga a hyperbolic knot) if one uses Parks
doubling construction [13] and two copies of a torus repméag g times the fiber class
in £(2) to obtain a symplectic surface of gengs- 1 in the double ofE(2)k, i.e. the
fiber sum of two copies oF/(2) x along the surfac& obtained from the union of a regular
fiber away from the surgery region fi(2) and a pseudo-section which is a minimal genus
Seifert surface of K capped off by the punctured sectioR'@). Since the torus ik’ (2) x
intersects with: at ¢ points, after the fiber sum we havegunctured torus in each piece
and the union of these two tori is the desired genysl surface.

5. CONSTRUCTION OFLAGRANGIAN TORI

5.1. Constructions of nullhomologous Lagrangian tori. The rst examples of homolo-
gous non-isotopic Lagrangian tori in a 4—manifold were tased by Vidussi in[]22].
These examples are in knot surgery manifolds k@) . The way they are constructed
is very similar to the construction of symplectic tori abovEhe main difference which
makes the tori Lagrangian, as opposed to symplectic, ighleasimple closed curves that
give these tori after multiplication by the trivial' factor inS' x (S® — vK) are not trans-
verse to but embedded in a fiber of the fibration of the compterokthe fibred knoti’
over the circle. It should be noted that these tori are necigsullhomologous.

After these first examples, and inspired by them, many otkeemeles are given in more
general classes of 4—manifolds (se€ [L1],[8]) [12]] [15]).

5.2. Circle sum construction and essential tori. In [11], generalizing a technique used
by Vidussi [22], Fintushel and Stern developed a tool catiecle sum that enables one to
construct homologically essential Lagrangian tori by gghe nullhomologous Lagrangian
tori above. This is done by xing an essential Lagrangianstéju= S* x p in the gluing
region of the knot surgery and adding this lgepo different simple closed curves in the
Seifert surface ir5® — vK before multiplying by the trivial circle factor as above. éde
new tori represent the same homology clas$,as

6. TOOLS TO DISTINGUISH HOMOLOGOUS SYMPLECTIC SURFACES

6.1. Seiberg-Witten invariants of branched covers.One way to distinguish the homol-
ogous symplectic tori is to consider the double branche@soaf the ambient manifold
branched along the tori. This is exactly how it is donelin [1T0hese covers are distin-
guished by using their Seiberg-Witten invariants which barcalculated after observing
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that the covers are link surgery manifolds, and the diffegphsm type of the cover de-
pends only on the isotopy class of the branch tori. One mirsadyantage of this technique
is the restriction to tori which represent even homologgsts.

6.2. Seiberg-Witten invariants of fiber sums. To distinguish the homologous symplec-
tic tori constructed in the general framework mentionechis hote one can also use the
Seiberg-Witten invariants of the fiber sum of the ambient drifold with £(1) along the
tori on one side and a generic fiber on thél) side (seell21]/[13],14],[123],.15],.[6]). The
effectiveness of this method lies within the fact that sudtber sum could also be inter-
preted as a link surgery manifold. Hence the calculatiorhef$eiberg-Witten invariants
boils down to the calculation of the multivariable Alexang®lynomial of certain links.
Once the difference of these invariants is establishedndimeisotopy of the tori could be
claimed as the diffeomorphism type of the fiber sum depentsanthe isotopy type of
these tori.

6.3. Fundamental group of the complement. As another method of distinguishing ho-
mologous symplectic surfaces one can try to use the fundatgnoup of the complement
(see [7] and([14]). In the examples on which this method idiagmne needs only the
Wirtinger presentation of link components and the SeWart-Kampen theorem to calcu-
late the fundamental groups. In general, complements ofolmyous non-isotopic sym-
plectic tori do not necessarily have nonisomorphic fundatadegroups (e.g. the examples
in [3], [4], [8]). Even if they do, showing that two groups aret isomorphic is usually a
challenging task. As it is demonstrated(in [7], techniquesifthe theory of hyperbolic 3—
manifolds or gauge theory (through its relationship wita #i/(2)-representations of the
fundamental groups of 3—manifolds) can be used to show tisteexe of innitely many
homologous symplectic tori the complements of which hava@swmorphic fundamental
groups. Moreover, the non-isotopy of higher genus surfabégined inl[14] is established
by extending the results inl[7]. The fundamental group ottibraplement is especially sig-
nicant in the higher genus case since it is the only known wajidtinguish homologous
symplectic surfaces of genusl1.

7. TOOLS TO DISTINGUISH HOMOLOGOUS.AGRANGIAN SURAFCES

7.1. Seiberg-Witten invariants of fiber sums. Seiberg-Witten invariants of the fiber sum
of F(2)x andE(1) along Lagrangian tori and a regular fiber is used to distisiythe tori
in [22]. This technique is similar to the analogous compatet for symplectic tori.

7.2. Lagrangian framing defect. Fintushel and Stern define the Lagrangian framing de-
fect (seel[11],[]12]) of a nullhomologous Lagrangian torasl &how that it is not only
particularly easy to calculate for the tori constructedchglthe ideas in[22] but it is in fact
a smooth isotopy invariant by demonstrating its relatigmstith Seiberg-Witten theory.
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This defect is an integer invariant which is essentially difeerence between the nullho-
mologous and Lagrangian framings of the torus. Another feature of this invariant is
that it is compatible with the circle sum construction, iiecan be used to distinguished
essential tori obtained by circle sum.

7.3. Fundamental group of the complement. As it is demonstrated in[1] andl[8], certain
classes of homologous Lagrangian tori have complemenksneiisomorphic fundamen-
tal groups. Again, different techniques can be used to shevdiversity of these groups.
For example, in[[B], the Alexander ideals of fundamentalugoof certain homologous
Lagrangian tori in specic knot surgery manifolds lead to aexpected connection with
algebraic number theory using which one can prove that thepgin question are differ-
ent at least when the Alexander polynomial of the knot ingdlin the surgery has a root
which is not a root of unity.

8. CONCLUSION

Although there has been extensive research on homologdusamisotopic symplectic
or Lagrangian surfaces in 4—manifolds there are still maestions waiting to be answered
in this area. For example, there is the property of zerois&dfsection that is shared by all
the surfaces constructed (symplectic or Lagrangian, mraggher genus). This may seem
to be a technical point, yet there are no examples in non-sdfantersection homology
classes. Also the variety in genus-1 examples is yet to beisd@gher genus. Of course
this could be explained by the ineffectiveness of SeibeitieWtheory, as it is used in this
subject, on distinguishing higher genus surfaces up tojgotNote that, since the normal
bundle of a Lagrangian surface is isomorphic to its cotahgendle, the self-intersection
is determined by the genus, hence higher genus Lagrangitates necessarily represent
homology classes of positive square.
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