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Solution: We note that (x, ¥) € Ry U Ryifand onlyif(x, y) € Ryor(x,y) € Ra. H_enct;le, (x,v) e
RiUR, ifand only if x < y orx > y. Because the condition x < y oI x > yﬁst e sam; as
the condition x = y, it follows that Ry U Ry = {(x,y) | x #y}.In otEerwo_rds,t e union of the
“|ess than” relation and the “greater than” relation is the “not equals” relation. b

Next, note that it is impossible for a pair (x, y) to belong to both Ry and R, bec;use it is
impossible for x < y and x > y. It follows that R; N R, = @. We also see that Ry — K = R:
Ry— R =Ry, and R ®@ R =Ry URy— RiNRy={(x.») | x # )}

There is another way that relations are combined that is analogous to the composition of

functions.

clation from B to a set C. The composiie of
(a,c), wherea € A,c € C, and for which
d (b, ¢) € S. We denote the composite

Let R be a relation from a set A toaset B and § ar
R and § is the relation consisting of ordered pairs
there exists an element b € B such that (a, b) € R an

of R and S by SoR.

Computing the composite of two relations requires that we find elements tha‘.c are the seconj
clement of ordered pairs in the first relation and the first element of ordered pairs in the secon

relation, as Examples 20 and 21 illustrate.

‘What is the composite of the relations R and S, where R isthe relgtion from {1, 2, 3}to{L, 2, ?{ g-]
with R = {(1, 1), (1,4), (2,3). (3, 1), (3, 4)} and § is the relation from (1,2,3,4} to {0, 1,2}

with § = {(1,0), (2,0), 3, 1), (3,2), 4, 1)}?

Solution: S ©R is constructed using all ordered pairs in R and ordered pairs in S, where tl‘ige
second element of the ordered pair in R agrees with the first element of the or'dere(i pfanu; Rl"
For example, the ordered pairs (2, 3) n R and (3, 1) in § produce the ordered pair (2, 1)m .
Computing all the ordered pairs in the composite, we find

SoR = {((1,0),(1, 1), @ 1, (2.2). 3, 0), 3. D). 1

.
Composing the Parent Relation with Itself Let R be the relation on the setdof eill irﬁﬁlg “v
such that (a, b) € R if person a is a parent of person b. Then (a, ¢) € RoR if and only 4

.. : . such
is a person b such that (a, b) € R and (b, ¢) € R, that is, if and only if therg isa (fel;lslmli fba 5
that a is a parent of b and b is a parent of ¢. In other words, (a, ¢) € R R if and only _.

grandparent of ¢.

e osite 0
The powers of a relation R can be recursively defined from the definition of a comp

two relations.

cursivel’ ”
Let R be a relation on the set A. The powers R*,n =1,2,3, ..., ate defined re

R'=R and R"'=R"0R.

.
The definition shows that R = R © R, RP=R*°oR=(R oR)o R, and 50
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Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers R", n = 2,3, 4, ....

Solution: Because R> = R oR, we find that R?> = {(1, 1), (2, 1), (3, 1), (4, 2)}. Furthermore,
because R3 = R?oR, R® = {(1,1),(2,1), (3, 1), (4, 1)}. Additional computation shows that
R* is the same as R*, so R* = {(1, 1), (2, 1), (3, 1), (4, 1)}. It also follows that R" = R? for
n=35,6,7,.... The reader should verify this. |

The following theorem shows that the powers of a transitive relation are subsets of this

The relation R on a set A is transitive if and only if R C R forn =1,2,3,....

Proof: We first prove the “if”” part of the theorem. We suppose that R” € R forn =1,2,3,....
In particular, R* C R. To see that this implies R is transitive, note that if (a, ) € R and (b, ¢) €
R, then by the definition of composition, (a, ¢) € R%. Because R? C R, this means that (a, ¢) €

We will use mathematical induction to prove the only if part of the theorem. Note that this

Assume that R" € R, where n is a positive integer. This is the inductive hypothesis. To
complete the inductive step we must show that this implies that R"*! is also a subset of R. To
show this, assume that (a, b) € R"*!. Then, because R""! = R" o R, there is an element x with
x € A such that (@, x) € R and (x, b) € R". The inductive hypothesis, namely, that R” C R,
implies that (x, #) € R. Furthermore, because R is transitive, and (a, x) € R and (x, b) € R, it
follows that (a, b) € R. This shows that R"*! C R, completing the proof. <

EXAMPLE 22
relation. It will be used in Section 8.4.
THEOREM 1
R. Hence, R is transitive.
part of the theorem is trivially true for n = 1.
Exercises

L List the ordered pairs in the relation R from A =
(0,1,2,3,4}t0 B =

4. Determine whether the relation R on the set of all people

{0, 1,2, 3}, where (a, b) € R if and is reflexive, symmetric, antisymmetric, and/or transitive,

only if where (a, b) € R if and only if
a) a=p, b) a +bh=4. a) a is taller than b.
¢) ax b d) alb. b) a and b were born on the same day.

¢) god(a,b) = 1. £ lem(a,b) = 2.
% 9) List all the ordered pairs in the relation R =
{(a, b) | @ divides b} on the set {1, 2, 3, 4, 5, 6}.
b) Display this relation graphically, as was done in
~ Example 4.
¢) Display this relation in tabular form, as was done in
Example 4.

3. For each‘of these relations on the set {1, 2, 3, 4}, decide
?W}_m&lelf 1t 18 reflexive, whether it is symmetric, whether
1S antisymmetric, and whether it is transitive.

b 10.2,0.3),0,4,6,2,0,3,.6,49)
) ((1,1),(1,2), 2, 1), (2. 2). 3. 3). (4, 4}
9 12, 4), (4, 2))
=';“) ((1,2), 2, 3), 3, 4)}
9 U(1,1),2,2). 3. 3), (4, 4))
((1,3),(1,4), 2,3), (2,4), (3, 1), (3, 4)}

¢) a has the same first name as b.
d) a and » have a common grandparent.

. Determine whether the relation R on the set of all Web

pages is reflexive, symmetric, antisymmetric, and/or tran-

sitive, where (a, b) € R if and only if

a) everyone who has visited Web page a has also visited
Web page b.

b) there are no common links found on both Web page
and Web page b.

¢) there is at least one common link on Web page a and
Web page b.

d) there is a Web page that includes links to both Web
page a and Web page b.

. Determine whether the relation R on the set of all real

numbers is reflexive, symmetric, antisymmetric, and/or
transitive, where (x, ) € R if and only if
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a) x+y=0. b) ® =%y
¢) x — visarational number. d) x =2y.
e) xy =0, f) xy=0.
g) x =L h) x=1lory=1.

. Determine whether the relation R on the set of all integers

is reflexive, symmetric, antisymmetric, and/or transitive,
where (x, v) € R if and only if

a) x # y. b) xy = L

) x=y+lorx=y—1

d) x =y (mod'7). e) x is amultiple of y.

f) x and y are both negative or both nonnegative.

g x =" h) x = %

. Give an example of a relation on a set that is

a) symmetric and antisymmetric.
b) neither symmetric nor antisymmetric.

A relation R on the set A is irreflexive if for every
a€A,(a,a)¢ R. Thatis, R is irreflexive if no element in
A is related to itself.

9.
10.
11.
12.
13.

14.

15.

Which relations in Exercise 3 are irreflexive?

Which relations in Exercise 4 are irreflexive?

Which relations in Exercise 5 are irreflexive?

Which relations in Exercise 6 are irreflexive?

Can a relation on a set be neither reflexive nor
irreflexive?

Use quantifiers to express what it means for a relation to
be irreflexive.

Give an example of an irreflexive relation on the set of all
people.

A relation R is called asymmetrie if (a, b) € R implies that
(b,a) ¢ R. Exercises 16-22 explore the notion of an asym-
metric relation. Bxercise 20 focuses on the difference between

asymmetry and antisymmetry.

16.
17.
18.
19.
20.

21.

22.

23.

Which relations in Exercise 3 are asymmetric?
Which relations in Exercise 4 are asymmetric?
Which relations in Exercise 5 are asymmetric?
Which relations in Exercise 6 are asymmetric?

Must an asymmetric relation also be antisymmetric? Must
an antisymmetric relation be asymmetric? Give reasons
for your answers.

Use quantifiers to express what it means for a relation to
be asymmetric.

Give an example of an asymmetric relation on the set of
all people.

How many different relations are there from a set with m
elements to a set with # elements?

I=="Let R be a relation from a set A to a set B. The inverse rela-
tion from B to A, denoted by R™!, is the set of ordered pairs
{(b,a) | (a,b) € R). The complementary relation R is the
set of ordered pairs ((a, b) | (a,b) ¢ R}.

24,

Let R be the relation R = {(@, b) | @ < b} on the set of
integers. Find

a) R°L b) R.

25.

26.

27.

28.

29.

30.

3L
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Let R be the relation R = {(a, b) | a divides b} on the set
of positive integers. Find

a) R, b R.

Let R be the relation on the set of all states in the United

States consisting of pairs (¢, b) where state a borders state
b. Find

a) R~ b) R.

Suppose that the function f from A to B is a one-to-
one correspondence. Let R be the relation that equals the
graph of /. Thatis, R = {{a, f(a)) | @ € A). What is the
inverse relation R—1?

Let Ry ={(1,2),(2,3),(3,4)} and R; = {(1, 1), (1,2),
2. 1), (2,2),(2,3), (3, 1), 3,2), (3,3), (3, 4)} be rela-
tions from (1, 2, 3} to {1, 2, 3, 4}. Find

a) Rl U Rg. b) Rl n Rz.

¢) R — Ry d) Ry — R;.

Let A be the set of students at your school and B the set of
books in the school library. Let Ry and R; be the relations
consisting of all ordered pairs (a, b), where student « is
required to read book b in a course, and where student a
has read book b, respectively. Describe the ordered pairs
in each of these relations.

El) R]URQ b) R]DRZ
c) Ri®dR; d) Ry — R:
) R — Ry

Let R be the relation {(1,2),(1,3),(2,3),(2.4), (3, )},
and let § be the relation {(2, 1), (3, 1), (3, 2), (4, 2)}. Find
SoR. .

Let R be the relation on the set of people consisting of
pairs (a, b), where a is a parent of b. Let S be the relation
on the set of people consisting of pairs («, ), where a and
b are siblings (brothers or sisters). What are S © R and
RoS§?

Exercises 32-35 deal with these relations on the set of real
numbers:

Ry = {(a,b) € R? | @ > b}, the “greater than” relation,
Ry = {(u, b) € R? | a > b}, the “greater than or equal to”

relation,

R; = {(a, b) € R? | a < b}, the “less than” relation,
R: = {(a,b) € R? | a < b}, the “less than or equal to”

relation,

Rs = {(a. b) € R? | a = b}, the “equal to” relation,
Rs = {(a, by € R? | a # b}, the “unequal to” relation.

32.

33.

Find

a) R U Rs;. b) R, URs.
C) RzﬂR4. d) R3ﬂR5.
e) R1 —Rg. f) RQ*Rl.
g) R @ Rs. h) R, @ Rs.
Find

a) Ry U Ry. b) R3 U Rg.
¢) RiNRg. d) R4 Rs.
e) R; — Rs. f) Rz — Rs.
g) Ry @ Re. h) Ry & Rs.
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34, Find
a) R] @] R]. b) R} o RQ.
C) R] e R}. d) RI 8] R4.
e) R1 e} RS- ﬂ R1 o R(,.
g) R2 a R3. h) R3 o R3.
35. Find
a) Rz o Rl. b) R2 o Rz.
c) R3 o R5. d) R4 o} Rl.
E) R5 8} R3. f) R} o RG.
g) R4 o] Ré. ]1) R6 o RG.

36. Let R be the parent relation on the set of all people
(see Example 21). When is an ordered pair in the rela-
tion R*?

37. Let R be the relation on the set of people with doctorates
such that (z, b) € R if and only if @ was the thesis advi-
sor of b. When is an ordered pair (z, b) in R2? When is
an ordered pair (a, ) in R", when »n is a positive inte-
ger? (Note that every person with a doctorate has a thesis
advisor.)

38. Let R; and Ry be the “divides” and “is a multiple of”
relations on the set of all positive integers, respectively.
That is, By = {(a, b) | a divides b} and R; = {(a, b) | a
is a multiple of 4}, Find

a) R U Ry, b) RN Rz.
¢) R — R d) R, — Ry.
E‘,) Rl@Rz.

39, Let Ry and R» be the “congruent modulo 3” and the
“congruent modulo 4” relations, respectively, on the set
of integers. That is, R; = {(a, b) | @ = b (mod 3)} and
Ry = {(a, b) | @ = b(mod 4)}. Find

a) Rl ] Rz. b) R1 n Rg.
(:) R1 —R;. d) Rg - R1.
' ) R @R,

40. List the 16 different relations on the set {0, 1}.

. 41. How many of the 16 different relations on {0, 1} contain

| the pair (0, 1)?

42. Which of the 16 relations on {0, 1}, which you listed in
Exercise 40, are

a) reflexive? b) irreflexive?
¢) symmetric? d) antisymmetric?

~ ©) asymmetric? f) transitive?

43. 2) How many relations are there on the set {a, b, ¢, d}?
b) How many relations are there on the set {a, &, ¢, d}

p that contain the pair (a, @)?

#% Let S be a set with 1 elements and let @ and b be distinct
-:tllzments of §. How many relations are there on § such

t

2) (a,b) e §?

3 b) (a,b) & §?

there are no ordered pairs in the relation that have a
as their first element?

) there jg at least one ordered pair in the relation that
has q ag its first element?

) there are no ordered pairs in the relation that have a
aS their first element and there are no ordered

*45,

. #46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

*56.

57.
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pairs in the relation that have b as their second
element?

f) there is at least one ordered pair in the relation that
either has a as its first element or has b as its second
element?

How many relations are there on a set with »n elements

that are

a) symmetric?

¢) asymmetric?

e) reflexive and symmetric?

I) neither reflexive nor irreflexive?

How many transitive relations are there on a set with »
elements if

a) n=17

b) antisymmetric?
d) irreflexive?

b) n =27 ¢) n=237?

Find the error in the “proof” of the following “theorem.”
“Theorem”: Let R be a relation on a set A that is symmet-
ric and transitive. Then R is reflexive.

“Proof”: Let @ € A. Take an element b € A such that
(a,b) € R. Because R is symmetric, we also have
(b,a) e R. Now using the transitive property, we
can conclude that (g,a) € R because (a,bh) € R and
(b,a) e R.

Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of these statements.

a) R U S is reflexive.

b) RN S is reflexive.

¢) R& S is irreflexive.

d) R — §is irreflexive.

e) ScoR isreflexive.

Show that the relation R on a set A is symmetric if and
only if R = R, where R~! is the inverse relation.

Show that the relation R on a set A is antisymmetric if
and only if R N R™! is a subset of the diagonal relation
A= {(a,a)|acAl

Show that the relation R on a set A is reflexive if and only
if the inverse relation R™! is reflexive.

Show that the relation R on a set A is reflexive if and only
if the complementary relation R is irreflexive.

Let R be a relation that is reflexive and transitive. Prove
that R" = R for all positive integers ».

Let R be the relation on the set {1, 2, 3, 4, 5} contain-
ing the ordered pairs (1, 1), (1, 2), (1,3), (2,3), (2,4),
(3.1),(3,4),(3,5), (4,2), (4, 5), (5, 1), (5,2), and (5, 4).
Find

a) R%. b) R3. ¢) R d) R°.

Let R be a reflexive relation on a set A. Show that R” is
reflexive for all positive integers n.

Let R be a symmetric relation. Show that R” is symmetric
for all positive integers n.

Suppose that the relation R is irreflexive. I's R? necessarily
irreflexive? Give a reason for your answer. '

-
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] 2
4 3
FIGURE 4 The FIGURE 5 The
Directed Graph of Directed Graph
the Relation R. of the Relation R.

relation. Similarly, arel

directions between distinct vertices.
is an edge from a vertex x to a vertex y an
edge from x to z (completing a triangle where ea

direction).

Remark: Note that a symmetric relation can be rep
graph where edges do not have directions. We will

EXAMPLE 10 Determine whether the relati

metric, antisymmetric, and/or transitive.

Solution: Because there are loops at €
neither symmetric nor antisymmetric
a, but there are edges in both directi
there is an edge from ¢ to b and an e

Because loops are not pre

reflexive. It is symmetric and not antisymm
is accompanied by an edge in the opposite d
graph that S is not transitive, because (c, a) an:

0 S.

Exercises

ation is antisymmetric if and only if there are never two edges in opposite
Finally, a relation is transitive if and only if whenever there

ons for the directed graphs shown in Figure 6 are reflexive, sym-

very vertex of the directed graph of R, it is reflexive. Ris
because there is an edge from « to b but not one from b to
s connecting b and c. Finally, R is not transitive because
dge from b to ¢, but no edge from a to c.

sent at all the vertices of the directed graph of S, this relation isnot

b c c d

(a) Directed graph of R (b) Directed graph of §
FIGURE 6 The Directed Graphs of the
Relations R and S§.

d an edge from a vertex y to a vertex z, there is an
ch side is a directed edge with the correct

resented by an undirected graph, which iga
study undirected graphs in Chapter 9.

etric, because every edge between distinct vertices
irection. Tt is also not hard to see from the directed
d (a, b) belong to S, but (¢, b) does not belon%

e

1. Represent each of theserelationson {1, 2, 3} witha matrix
(with the elements of this set listed in increasing order).

2) {(1,1),(1,2).(L3)

b) {(1,2),(2,1).(2.2),(3,3)}

¢ {(1, 1), (1,2),(1,3),(2,2).(2,3), 3.3}
d) {(1.3).G, D}

2. Represent gach of these relations on {1,2,3,4) with a
matrix (with the elements of this set listed in increasing
order).

) ((1,2),(1,3,(1,4),(2,3),2.4,6.

b) {(1,1), (1.4, (2,2).(3,3), (4 L)}

¢ ((12),(1,3),(1,4),(2,1),2,3). 2,4, G 1.6, 2),
(3,4),(4,1). (4,2). (4,3))

d) {2.4),(3,1),(3,2),6.49}

3. List the ordered pairs in the relations on {1,.2.3)
corresponding to these matrices (where the roWs 8k
columns correspond to the integers listed in increasifie

order).
1 1 010
a) [0 1 0 b [0 1 0
1 01 0 10
1 1 1
o [1 01
1 11

: . : 38
4. List the ordered pairs in the relations on {1»&’5 i
corresponding to these matrices (where the 10
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columns correspond to the integers listed in increasing
order).

11 0 1] 1110
101 0 01 0 0
Vo111 Dl 01 1
(1 0 1 1 100 1
[0 1 0 1]
g |1 010
01 0 1
10 1 0]

5. How can the matrix representing a relation R on a set A
be used to determine whether the relation is irreflexive?
6. How can the matrix representing a relation R on a set A
be used to determine whether the relation is asymmetric?
7. Determine whether the relations represented by the ma-
trices in Exercise 3 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

8. Determine whether the relations represented by the ma-
trices in Exercise 4 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

9. How many nonzero entries does the matrix representing

the relation R on A = {1, 2, 3, ..., 100} consisting of the
first 100 positive integers have if R is

a) {(a,b)|a=>b}? b) {(a,b) | a # b}?

¢) {(@.b)|la=b+1}? d) {(a,b)|a=1)?

¢) {(a,b) | ab=1)?

10. How many nonzero entries does the matrix representing

the relation R on A = {1,2,3,...,1000) consisting of

the first 1000 positive integers have if R is

) {(a,b)|a<b)?

b) {(a,b) |a=b=+1}?

¢) {(a,b) | a+b=1000}?

d) {(a,5) [a+b < 1001)?

€) ((a,b)|a#0}?

1L How can the matrix for K, the complement of the relation

R, be found from the matrix representing R, when R is a

. telation on a finite set A?

12. How can the matrix for R, the inverse of the relation
R, be found from the matrix representing R, when R is a

 [elation on a finite set A?

9 Let R be the relation represented by the matrix

01 1 )
Mg=|1 1 ¢
1 0 1
_ F“lilld the matrix representing
H.) R‘l_ h) E c) RZ.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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Let R and R; be relations on a set A represented by the
matrices

01 0 01 0
Mg =111 and Mg, = |0 1 1
1 00 1 1 1
Find the matrices that represent
a) R UR,. b) RiNR,. C) Ry o Ry,
d) RioR,. e} R & R,.

Let R be the relation represented by the matrix

Mp =

—_ o o

1
0
1

o = O

Find the matrices that represent

a) R2 by R ¢) R*

Let R be a relation on a set A with n elements. If there
are k nonzero entries in Mg, the matrix representing R,
how many nonzero entries are there in M-, the matrix
representing R~!, the inverse of R?

Let R be a relation on a set A with n elements. If there
are k nonzero entries in Mg, the matrix representing R,
how many nonzero entries are there in Mgz, the matrix
representing R, the complement of R?

Draw the directed graphs representing each of the rela-
tions from Exercise 1.

Draw the directed graphs representing each of the rela-
tions from Exercise 2.

Draw the directed graph representing each of the relations
from Exercise 3.

Draw the directed graph representing each of the relations
from Exercise 4.

Draw the directed graph that represents the relation
{ta, @), (@, ), (b, ¢), (¢, D), (¢, d), (d, @), (d, b)}.

In Exercises 23-28 list the ordered pairs in the relations rep-
resented by the directed graphs.

23.

25,

24,
4 a
b ¢ b c
26.
a b a b
h i
r B
c 4
c d
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27.

29. How can the directed graph of a relation R on a finite set representing the complementary relation R.
A be used to determine whether a relation is asymmetric? 35. Show that if M is the matrix representing the relation R,
30. How can the directed graph of a relation R on a finite set then ME’;] is the matrix representing the relation R™, .
A be used to determine whether a relation is irreflexive? 36. Given the directed graphs representing two relations, how
31. Determine whether the relations represented by the di- can the directed graph of the union, intersection, sym-
rected graphs shown in Exercises 2325 are reflexive, ir- metric difference, difference, and composition of these
reflexive, symmetric, antisymmeiric, and/or transitive. relations be found?

8.4 Closures of Relations

8-26

28. 32. Determine whether the relations represented by the di-
bD rected graphs shown in Exercises 26-28 are reflexive, ir-
b reflexive, symmetric, antisymmetric, asymmettic, and/or

transitive.

33. Let R be arelation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph
C}CC\dO representing the inverse relation R~
34. Let R be a relation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph

Introduction

A computer network has data centers in Boston, Chicago, Denver, Detroit, New York, and
San Diego. There are direct, one-way telephone lines from Boston to Chicago, from Boston to.
Detroit, from Chicago to Detroit, from Detroit to Denver, and from New York to San Diego.
Let R be the relation containing (z, b) if there is a telephone line from the data center inato
that in . How can we determine if there is some (possibly indirect) link composed of one of
more telephone lines from one center to another? Because not all links are direct, such as
link from Boston to Denver that goes through Detroit, R cannot be used directly to answer t
In the language of relations, R is not transitive, so it does not contain all the pairs that can b
linked. As we will show in this section, we can find all pairs of data centers that have a link
by constructing a transitive relation S containing R such that § is a subset of every transitive:
relation containing R. Here, S is the smallest transitive relation that contains K. This relation 1§
called the transitive closure of R.

In general, let R be a relation on a set A. R may or may not have some property P, suchl &8
reflexivity, symmetry, or transitivity. If there is a relation § with property P containing R
that S is a subset of every relation with property P containing R, then § is called the closure
R with respect to P. (Note that the closure of a relation with respect to a property may not eXi
see Exercises 15 and 35 at the end of this section.) We will show how reflexive, symmetric, &

transitive closures of relations can be found.

Closures

The relation R = {(1, 1), (1,2), (2, 1), (3,2)} onthe set A = {1, 2, 3} isnot reflexive. HOW S
we produce a reflexive relation containing R that is as small as possible? This can be dor!
adding (2, 2) and (3, 3) to R, because these are the only pairs of the form (a, a) thatare not _
Clearly, this new relation contains R. Furthermore, any reflexive relation that contains "
also contain (2, 2) and (3, 3). Because this relation contains R, 1is reflexive, and is CONEE
within every reflexive relation that contains R, it is called the refiexive closure of R- 2

As this example illustrates, given a relation R on a set A, the reflexive closure OE
be formed by adding to R all pairs of the form (4, a) with @ € A, not already 1158
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Case 1 ‘
V; v
—>—0——— @ —b v —p—g— p @ ‘
All interior vertices |
in {vivg, o, v}
Vi
Case 2 //(.\ \ ‘ |
/ l . \\ ‘l
L All interior vertices i (L
g, e Vi)

FIGURE 4 Adding vy to the Set of | I
Allowable Interior Vertices.

Lemma 2 gives us the means to compute efficiently the matrices Wi, k = 1,2, ..., 1. We |‘ i
display the pseudocode for Warshall’s algorithm, using Lemma 2, as Algorithm 2.

ALGORITHM 2 Warshall Algorithm.

procedure Warshall (Mp : n X n zero—one matrix) ‘ l
. ‘;

W:= MR
fork:=1ton _ | |I
begin ‘ i
. fori:=1ton ‘
begin §
forj:=1ton il
Wiy = wi V(Wi A W) ;‘ | ‘

end ‘
end (W = [w;;] is Mg}

The computational complexity of Warshall’s algorithm can easily be computed in terms of
bit operations. To find the entry wl[.iﬂ from the entries wl[.';fﬁu, wgi_l], and wg;*l] using Lemma
2 requires two bit operations. To find all n* entries of W}, from those of W;_; requires 2n? bit H '
operations. Because Warshall’s algorithm begins with Wy = My and computes the sequence

of n zero—one matrices W, Wy, ..., W, = Mp-, the total number of bit operations used is ‘ 1 ‘
n-2n? =20,

¢ elr? be th_e relation on the set {0, 1, 2, 3} containing the 3. Let R be the relation {{(a, b) | a divides b} on the set of ‘ ‘
flfpalrs (0.1), (1, 1), (1,2),(2, 0),(2,2), and (3, 0). integers. What is the symmetric closure of R?
5]

fexi ; ; . .

bexwe c]osyre of R. b) symmetric closure of R. 4. How can the directed graph representing the reflexive ‘| ‘ :
iﬁ:therelanon {(a, b) | a # b} onthe setof integers. closure of a relation on a finite set be constructed from |

8 the reflexive closure of R? . the directed graph of the relation?
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In Exercises 5-7 draw the directed graph of the reflexive
closure of the relations with the directed graph shown.

5. 6.

©
ae

c d

8. How can the directed graph representing the symmetric
closure of a relation on a finite set be constructed from
the directed graph for this relation?

9. Find the directed graphs of the symmetric closures of the
relations with directed graphs shown in Exercises 5-7.

10. Find the smallest relation containing the relation in Ex-
ample 2 that is both reflexive and symmetric.

11. Find the directed graph of the smallest relation thatis both
reflexive and symmetric for each of the relations with di-
rected graphs shown in Exercises 5-7.

12. Suppose that the relation R on the finite set A is rep-
resented by the matrix Mg. Show that the matrix that
represents the reflexive closure of Ris Mg Vv I,.

13. Suppose that the relation R on the finite set A is rep-
resented by the matrix Mg. Show that the matrix that
represents the symmetric closure of R is Mp v M.

14. Show that the closure of a relation R with respect to a
property P, if it exists, is the intersection of all the rela-
tions with property P that contain R.

15. When is it possible to define the “irreflexive closure”
of a relation R, that is, a relation that contains R, is ir-
reflexive, and is contained in every irreflexive relation that
contains R?

16. Determine whether these sequences of vertices are paths
in this directed graph.

d

a) a,b,c,e
b) b,e,c, b, e

¢) a,a,b,e d, e
d) b,c,e.d,a,a,b
€) b,c,c.be,d,ed
f) a,a,b,b,c,c,bed

17. Find all circuits of length three in the directed graph in
Exercise 16.

18. Determine whether there is a path in the directed graph in
Exercise 16 beginning at the first vertex given and ending
at the second vertex given.

a) a,b b) b,a ¢) b b
d) a,e e) b,d ) ¢ d
g d,d h) e, a i ec

19. Let R be the relation on the set {1,2, 3, 4, 5} containing
the ordered pairs (1, 3), (2, 4), 3, 1), 3, 3), (4, 3),(5,1),
(5,2), and (5, 4). Find
a) RZ. by R3. ¢) R*

d) R°. e) R fi R*.

20. Let R be the relation that contains the pair (a, b) if a and b
are cities such that there is a direct non-stop airline flight
from & to b. When is (2, b) in
a) R?7 b) R*? c) R*?

21. Let R be the relation on the set of all students contain-
ing the ordered pair (a, b) if @ and b are in at least one
common class and a  b. When is (a, b) in

a) R27 b) R*? " ¢) R*?

22. Suppose that the relation R is reflexive. Show that R* is
reflexive.

23.- Suppose that the relation R is symmetric. Show that R*
is symmetric.

24. Suppose that the relation R is irreflexive. s the relation
R? necessarily irreflexive?

25. Use Algorithm 1 to find the transitive closures of these.
relations on {1, 2, 3, 4}.

a) {(1,2),(2,1),(2,3),(3,4), 4 1)}
b) (2, 1).(2,3),(3,1), 3,4, @ 1), @3}
O 1(1,2),(1,3), (1.4),(2,3). (2,9, 3, 4) b
a) 1L D), (L4), 2, 1),2,3), 3. 1), G, 2), G, (2
26. Use Algorithm 1 to find the transitive closures of thes¢
relations on {a, b, ¢, d, e}.
a) {(a,c). (b,d). (c, a), (d, D), (. d)}
b) {(b, ), (b, €), (c, &), (d. a), (e, b). (&, ) y
& [(@.b), (@, o) (@ e), (b, a), (b.), (c,a), (- DA
(e, d)} :
d) {(a, &), (b, a), (b, ), (c.d),(d, a), CRONCEAC
(e.0). (e &)} E
27. Use Warshall’s algorithm to find the transitive cloSUIES
the relations in Exercise 25.
28. Use Warshall’s algorithm to find the transitive clOSUEE
the relations in Exercise 26.
29, Find the smallest relation containin
{(1,2),(1,4), (3, 3), (4, 1)} that is
a) reflexive and transitive.

g the
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30.
3l

b) symmetric and transitive.
¢) reflexive, symmetric, and transitive.

Finish the proof of the case when @ # b in Lemma 1.

Algorithms have been devised that use O(n**) bit op-
erations to compute the Boolean product of two 1 x
zero—one matrices. Assuming that these algorithms can
be used, give big-O estimates for the number of bit oper-
ations using Algorithm 1 and using Warshall’s algorithm
to find the transitive closure of a relation on a set with n
elements.

#2. Devise an algorithm using the concept of interior vertices

8.5 Equivalence Relations

33,
34.

35.
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in a path to find the length of the shortest path between
two vertices in a directed graph, if such a path exists.
Adapt Algorithm 1 to find the reflexive closure of the
transitive closure of a relation on a set with » elements.
Adapt Warshall’s algorithm to find the reflexive closure of
the transitive closure of a relation on a set with # elements.
Show that the closure with respect to the property P of
the relation R = {(0, 0), (0, 1}, (1, 1),(2,2)} on the set
{0, 1, 2} does not exist if P is the property

a) “is not reflexive.”

b) “has an odd number of elements.”

Introduction

In some programming languages the names of variables can contain an unlimited number of
characters. However, there is a limit on the number of characters that are checked when a
compiler determines whether two variables are equal. For instance, in traditional C, only the
first eight characters of a variable name are checked by the compiler. (These characters are
uppercase or lowercase letters, digits, or underscores.) Consequently, the compiler considers
strings longer than eight characters that agree in their first eight characters the same. Let R be
the relation on the set of strings of characters such that s Rz, where s and ¢ are two strings, if s
and ¢ are at least eight characters long and the first eight characters of s and ¢ agree, or s = 7.
It is easy to see that R is reflexive, symmetric, and transitive. Moreover, R divides the set of all
strings into classes, where all strings in a particular class are considered the same by a compiler

for traditional C.

The integers a and b are related by the “congruence modulo 4” relation when 4 divides
a — b. We will show later that this relation is reflexive, symmetric, and transitive. It is not hard
to see that a is related to b if and only if @ and b have the same remainder when divided by 4. It
follows that this relation splits the set of integers into four different classes. When we care only
what remainder an integer leaves when it is divided by 4, we need only know which class it is

in, not its particular value.

These two relations, R and congruence modulo 4, are examples of equivalence relations,
namely, relations that are reflexive, symmetric, and transitive. In this section we will show that
such relations split sets into disjoint classes of equivalent elements. Equivalence relations arise
whenever we care only whether an element of a set is in a certain class of elements, instead of

caring about its particular identity.

Equivalence Relations

In this section we will study relations with a particular combination of properties that allows
them to be used to relate objects that are similar in some way.

A relation on a set A is called an eguivalence relation if it is reflexive, symmetric, and

transitive.
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possible when an integer is divided by m. These m congruence classes are denoted by
[01:, [1]m, - - ., [ — 1].. They form a partition of the set of integers.

EXAMPLE 14 What are the sets in the partition of the integers arising from congruence modulo 47

Solution: There are four congruence classes, corresponding to [0]4, [114, [2]4, and [3]4. They
are the sets

[0ls={...,—8,-4,0,4,8,...},
[gmfn =T, =8.1, 5.9, .3,

2} ={...,—6,—2,2,6,10,...},
Bla= sy =5, =13, 7, 11,. .}

These congruence classes are disjoint, and every integer is in exactly one of them. In other
words, as Theorem 2 says, these congruence classes form a partition. <

‘ We now provide an example of a partition of the set of all strings arising from an equivalence
relation on this set.

EXAMPLE 15 Let R; be the relation from Example 5. What are the sets in the partition of the set of all bit strings
arising from the relation R; on the set of all bit strings? (Recall that s R3 7, where s and ¢ are bit
strings, if s = 7 or s and # are bit strings with at least three bits that agree in their first three bits.)

Solution: Note that every bit string of length less fhan three is equivalent only to itself.
‘ Hence [A]x, = {A), [0]x, = {0}, [1]r, = (1}, [00]z, = {00}, [01]g, = (01}, [10]¢, = {10}, and.
| ‘ [11]z, = {11}. Note that every bit string of length three or more is equivalent to one of the eight
} ] bit strings 000, 001, 010, 011, 100, 101, 110, and 111. We have

[000]g, = {000, 0000, 0001, 00000, 00001, 00010, 00011, ...},
[001]g, = {001, 0010, 0011, 00100, 00101, 00110, 00111, ...},
[010]z, = {010, 0100, 0101, 01000, 01001, 01010, 01011, ...}
[011]z, = {011, 0110, 0111, 01100, 01101, 01110, 01111, ...},
[100]&, = {100, 1000, 1001, 10000, 10001, 10010, 10011, ...},

| [101]g, = {101, 1010, 1011, 10100, 10101, 10110, 10111, ...},
[110]g, = {110, 1100, 1101, 11000, 11001, 11010, 11011, ...}, and
[111]g, = (111, 1110, 1111, 11100, 11101, 11110, 11111, ...}

These 15 equivalence classes are disjoint and every bit string is in exactly one of them. AS
Theorem 2 tells us, these equivalence classes partition the set of all bit strings.

~ Exercises
1. Which of these relations on {0, 1, 2, 3} are equivalence a) {(0,0),(1, 1), (2,2), (3,3} 3.3)
relations? Determine the properties of an equivalence re- b) {(0, 0), (0, 2), (2, 0).(2,2),(2,3).G, 2), 3,

lation that the others lack. ¢ {(0,0),(1,1),(1,2),(2,1),(2,2.G, 3)}
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d) {(0,0),(1,1),(1,3),2,2),2,3), G, 1), 3,2),
(3,3)}

e) {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2), 2,0,
(2,2),3,3)

. Which of these relations on the set of all people are equiv-

alence relations? Determine the properties of an equiva-

lence relation that the others lack.

a) {(a.b) | a and b are the same age}

b) {(a, b) | a and b have the same parents}

¢) {(a,b) | a and b share a common parent}

d) {(a,b) | a and b have met}

€) {(a,b) | a and b speak a common language}

. Which of these relations on the set of all functions

from Z to Z are equivalence relations? Determine the

properties of an equivalence relation that the others

lack.

a) {(f, g) | f(1) =g()}

b) {(f, &) | f(0) = g(0)or /(1) = g(1)}

o) {(f,8) | flx) — glx) = 1forall x € Z}

d) ((f,g)| for some C €Z, for all x € Z, f(x) —
glx)=C}

e) {(f.g)| f(0)=g()and f(1) = g(0)}

. Define three equivalence relations on the set of students

in your discrete mathematics class different from the re-

lations discussed in the text. Determine the equivalence

classes for each of these equivalence relations.

. Define three equivalence relations on the set of buildings
on a college campus. Determine the equivalence classes
for each of these equivalence relations.

. Define three equivalence relations on the set of classes
offered at your school. Determine the equivalence classes
for each of these equivalence relations,

. Show that the relation of logical equivalence on the set
of all compound propositions is an equivalence relation.
What are the equivalence classes of F and of T?

- Let R be the relation on the set of all sets of real num-
bers such that § R T if and only if § and T have the
same cardinality. Show that R is an equivalence rela-
tion. What are the equivalence classes of the sets {0, 1, 2}
and 7.7

- Suppose that A is a nonempty set, and £ is a function that
has A as its domain. Let R be the relation on A consisting
of all ordered pairs (x, y) such that f(x) = f(3).

3) Show that R is an equivalence relation on A.

- b) What are the equivalence classes of R?

‘ Sﬂpgose that A is a nonempty set and R is an equivalence
:flanqn on A. Show that there is a function f with A as its

y ‘Umam such that (x, ) € R if and only if f(x) = F(3).
S‘il:k\lﬁ ﬂ:hat the relation R consisting of all pairs (x, ¥)
Lthat x and y are bit strings of length three or more

' agree in their first three bits is an equivalence re-

iﬁ?l?en on the set of all bit strings of length three or
. W that the relation R consisting of all pairs (x, 3) such

ALy and y are bit strings of length three or more that
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agree except perhaps in their first three bits is an equiva-
lence relation on the set of all bit strings of length three
Or more.

. Show that the relation R consisting of all pairs (x, y) such

that x and y are bit strings that agree in their first and third
bits is an equivalence relation on the set of all bit strings
of length three or more.

. Let R be the relation consisting of all pairs (x, ) such that

x and y are strings of uppercase and lowercase English
letters with the property that for every positive integer #,
the nth characters in x and y are the same letter, either
uppercase or lowercase. Show that R is an equivalence
relation.

. Let R be the relation on the set of ordered pairs of

positive integers such that ((a, b),{c,d)) € R if and
only if @ +d = b+ ¢. Show that R is an equivalence
relation.

. Let R be the relation on the set of ordered pairs of pos-

itive integers such that ((¢, b), (¢, 4)) € R if and only if
ad = bc. Show that R is an equivalence relation.

. (Requires calculus)

a) Show that the relation R on the set of all differentiable
functions from R to. R consisting of all pairs ( f, g)
such that f/(x) = g'(x) for all real numbers x is an
equivalence relation.

b) Which functions are in the same equivalence class as
the function f(x) = x2?

. (Requires calculus)

a) Let » be a positive integer. Show that the relation R
on the set of all polynomials with real-valued coeffi-
cients consisting of all pairs (£, g) such that f®)(x) =
2%)(x) is an equivalence relation. [Here f"(x) is the
nth derivative of f(x).]

b) Which functions are in the same equivalence class as
the function f(x) = x*, where n = 3?

. Let R be the relation on the set of all URLs (or Web ad-

dresses) such that x R y if and only if the Web page at
x is the same as the Web page at v. Show that R is an
equivalence relation.

. Let R be the relation on the set of all people who have

visited a particular Web page such that x R y if and only
if person x and person y have followed the same set of
links starting at this Web page (going from Web page to
Web page until they stop using the Web). Show that R is
an equivalence relation.

In Exercises 21-23 determine whether the relation with the
- directed graphs shown is an equivalence relation.
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23.

24. Determine whether the relations represented by these
zero—one matrices are equivalence relations.

{19 1010 1110
0101 1110

11
a)?11 o1l Pli110
0101 0001

25, Show that the relation R on the set of all bit strings such
that s R ¢ if and only if s and ¢ contain the same number
of 1s is an equivalence relation.

26. What are the equivalence classes of the equivalence rela-
tions in Bxercise 1?

27. What are the equivalence classes of the equivalence
relations in Exercise 27

28. What are the equivalence classes of the equivalence rela-
tions in Exercise 37

29. What is the equivalence class of the bit string 011 for the

equivalence relation in Exercise 257
30. What are the equivalence classes of these bit strings for
the equivalence relation in Exercise 11?
a) 010 b) 1011 ¢) 11111 d) 01010101
31. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation from Exercise 117
32. What are the equivalence classes of the bit strings in
Exercise 30 for the equivalence relation from Exercise
127

33. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation Ry from Example 5
on the set of all bit strings? (Recall that bit strings s and
¢ are equivalent under Ry if and only if they are equal or
they are both at least four bits long and agree in their first
four bits.)

34. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation Rs from Example 5
on the set of all bit strings? (Recall that bit strings s and
¢ are equivalent under Rs if and only if they are equal or
they are both at least five bits long and agree in their first
five bits.)

35. What is the congruence class [r]s (that is, the equivalence
class of # with respect to congruence modulo 5) whenr is
a) 27 b) 37 ¢) 67 d) 3?7

36. What is the congruence class [4],, when m is
a) 27 b) 3? ¢) 67 d) 87

37. Give a description of each of the congruence classes mod-
ulo 6.

38. What is the equivalence class of the strings with respect
to the equivalence relation in Exercise 147
a) No b) Yes ¢) Help
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39. a) What is the equivalence class of (1, 2) with respect to
the equivalence relation in Exercise 157
b) Give an interpretation of the equivalence classes
for the equivalence relation R in Exercise 15.
[Hint: Look at the difference @ — b corresponding to
(a,b).]
40. a) What is the equivalence class of (1,2} with respect
to the equivalence relation in Exercise 167
b) Give an interpretation of the equivalence classes for
the equivalence relation R in Exercise 16. [Hint: Look
at the ratio a/b corresponding to (a, b).]
41. Which of these collections of subsets are partitions of

{1,2,3,4,5,6}7

a) {1,2},{2,3,4},{4,5.6 b) {1} [2,3, 6}, {4}, {5}

¢ {2.4.6),(1,3,5} d) (1,4,5}, (2,6}

42. Which of these collections of subsets are partitions of

{—3,-2,-1,0,1,2,3})?

a) {—3,—-1,1,34{-2,0, 2}

b) {—=3,-2,-1,0}4{0,1,2,3}

¢) (—3,3),{-2.2},{-1,1}L{0}

d) {-3,-2,2,3} {—-1. 1}

43. Which of these collections of subsets are partitions on the

set of bit strings of length 87

a) the set of bit strings that begin with 1, the set of bif
strings that begin with 00, and the set of bit strings
that begin with 01,

b) the set of bit strings that contain the string 00, the set
of bit strings that contain the siring 01, the set of bit
strings that contain the string 10, and the set of bit
strings that contain the string 11

¢) the set of bit strings that end with 00, the set of bit
strings that end with 01, the set of bit strings that end.
with 10, and the set of bit strings that end with 11 ==

d) the set of bit strings that end with 111, the set of bit
strings that end with 011, and the set of bit strings thal
end with 00 ;

e) the set of bit strings that have 3k ones, where K 18 &
nonnegative integer; the set of bit strings that contaiit
3% + 1 ones, where k is a nonnegative infeger. and { 2
set of bit strings that contain 3k + 2 ones, where k1§
a nonnegative integer

44. Which of these collections of subsets are partition
set of integers?
a) the set of even integers and the set of odd integets.
b) the set of positive integers and the set of negdit
integers y
¢) the set of integers divisible by 3, the set of
leaving a remainder of 1 when divided by 3. 417
set of integers leaving a remainder of 2 whent divit
by 3
d) the set of integers less than
with absolute value not excee
integers greater than 100
e) the set of integers not divisible
integers, and the set of integers that le
of 3 when divided by 6

s of th

100, the set of IneE

by 3, the set{
aveare‘ il
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45. Which of these are partitions of the set Z x Z of ordered
pairs of integers?

a) the set of pairs (x, y), where x or y is odd; the set of
pairs (x, ¥), where x is even; and the set of pairs (x, ¥),
where y is even

b) the set of pairs (x, 3), where both x and y are odd;
the set of pairs (x, y), where exactly one of x and y is
odd; and the set of pairs (x, ), where both x and y are
even
the set of pairs (x, ), where x is positive; the set of
pairs (x, y), where y 1s positive; and the set of pairs
(x, ¥}, where both x and y are negative
the set of pairs (x, y), where 3 | x and 3 | y; the set of
pairs (x, y), where 3 | x and 3 J y; the set of pairs
(x,y), where 3 } x and 3 | y; and the set of pairs
(x,y),where3 fx and3 } v
the set of pairs (x, y), where x > 0 and y = 0; the
set of pairs (x, ¥), where x = 0 and y < 0; the set of
pairs (x, ¥), where x < 0 and y > 0; and the set of
pairs (x, y), wherex < Oand y <0
the set of pairs (x, ¥), where x # 0 and y = 0; the set
of pairs (x, y), where x = 0 and y = 0; and the set of
pairs (x, ¥), wherex % 0and y =0

46. Which of these are partitions of the set of real numbers?

a) the negative real numbers, {0}, the positive real
numbers

b) the set of irrational numbers, the set of rational
numbers

¢) the set of intervals [k, k+ 1], k=..., -2
DD,

d) the set of intervals (k, k + 1), k=..., =2, —1,0,
82, .. .

e) the set of intervals (k, k+ 1], k=...,—2,—1,0,
I
f) thesets (x +n | n e Z} forallx € [0, 1)

AT List the ordered pairs in the equivalence relations pro-
duced by these partitions of {0, 1,2, 3, 4, 5}.
a) (0}, (1,2}, 3,4, 5}
b) {0, 1), 2,3), 4, 5}
) {0,1, 2},{3,4,5}

b d) {0}, {1}, {21, {3}, {4}, {5}

8. List the ordered pairs in the equivalence relations pro-

duced by these partitions of {a, b, ¢, d, e, f, g}.
A (a,), (c,d}, {e, . g)
) a}, (o), {c, d), fe, 1}, (g}
8 (a,b,c,d}, (e, f, g}
Y {a,c.e g}, (b, d1, 1}

Da

1,0

N

ition P, Is called a refinement of the partition P, if
WOt Py is a subset of one of the sets in Ps.

"ihoogv that the partition formed from congruence classes
00Ulo 6 is a refinement of the partition formed from
MRruence classes modulo 3.
SHOW that the
Inited
R .

partition of the set of people living in the
States consisting of subsets of people living in the
ounty (or parish) and same state is a refinement of
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the partition consisting of subsets of people living in the
same state.

. Show that the partition of the set of bit strings of length 16
formed by equivalence classes of bit strings that agree on
the last eight bits is a refinement of the partition formed
from the equivalence classes of bit strings that agree on
the Tast four bits.

In Exercises 52 and 53, R, refers to the family of equivalence

relations defined in Example 5. Recall thats R, £, where s and

t are two strings if s = ¢ or s and ¢ are strings with at least n

characters that agree in their first » characters.

52. Show that the partition of the set of all bit strings formed
by equivalence classes of bit strings with respect to the
equivalence relation R4 is a refinement of the partition
formed by equivalence classes of bit strings with respect
to the equivalence relation Rj.

53. Show that the partition of the set of all identifiers in C
formed by the equivalence classes of identifiers with re-
spect to the equivalence relation Rs; is a refinement of
the partition formed by equivalence classes of identifiers
withrespect to the equivalence relation Rg. (Compilers for
“old” C consider identifiers the same when their names
agree in their first eight characters, while compilers in
standard C consider identifiers the same when their names
agree in their first 31 characters.)

54. Suppose that R, and R; are equivalence relations on a set
A. Let P; and P, be'the partitions that correspond to Ry
and R,, respectively. Show that R) € R, if and only if P,
is a refinement of P’

55. Find the smallest equivalence relation on the set {a, b,
¢, d, e} containing the relation {(a, »), (@, ¢}, (d, e)}.

56. Suppose that Ry and R; are equivalence relations on the
set §. Determine whether each of these combinations of
R, and R, must be an equivalence relation.

a) RjUR, b) RiNR, ¢) Ri®BR;

57. Consider the equivalence relation from Example 3,

namely, R = {(x, ¥} | x — y is an integer}.
a) What is the equivalence class of 1 for this equivalence
relation?
b) What is the equivalence class of 1/2 for this equiva-
lence relation?
*58. Each bead on a bracelet with three beads is either red,
white, or blue, as illustrated in the figure shown.

Bead 2
White

Define the relation R between bracelets as: (By, By),
where B; and B are bracelets, belongs to R if and only




®59.

60.

61.

62.

*63.
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if B; can be obtained from B; by rotating it or rotating it
and then reflecting it.
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form the transitive closure of the symmetric closure of the
reflexive closure of a relation?

a) Show that R is an equivalence relation. *64. Do we necessarily get an equivalence relation when we
b) What are the equivalence classes of R? form the symmetric closure of the reflexive closure of the
) . transitive closure of a relation?
Let R be the relation on the set of all colorings of the -,
; 63. Suppose we use Theorem 2 to form a partition P from
2 x 2 checkerboard where each of the four squares is col- ivalence relation R. What is h ol
ored either red or blue so that (Cy, C,), where C; and C; Py PR il i t“’nfce e
are 2 x 2 checkerboards with each of their four squares on al resu’ls 1t we use theorem = again to form an
- / equivalence relation from P?
colored blue or red, belongs to R if and only if C> can be )
obtained from C; either by rotating the checkerboard or 66. Suppose we use Theorem 2 to form an equivalence rela-
by rotating it and then reflecting it. tion R from a partition P. What is the partition P’ that
. . ) results if we use Theorem 2 again to form a partition
a) Show that R is an equivalence relation. —
b) What are the equivalence classes of R? . : .
. ) N 67. Devise an algorithm to find the smallest equivalence re-
a) Let }i‘ be the relation on the set of functions frqm Z lation containing a given relation.
té)Z) (suchsth? (f ,3g2) bgg)ngst;otlzﬁ add only ff - *68. Let p(n) denote the number of different equivalence
(g g UL R ¥+ Shiogr Shitt & iepai equival enice relations on a set with # elements (and by Theorem
relation. 2 th L . .
i . . i e number of partitions of a set with n elements).
b) Describe the equivalence class containing f(n) = n Show that p(n) satisfies the recurrence relation p(n) =
for the equlvalence relation Ofpal't (a) Ej!;(l) C(n —1, J)p(f’t e g 1) and the initial condition
Determine the number of different equivalence relations p(0) = 1. (Note: The numbers p(n) are called Bell
on a set with three elements by listing them. numbers after the American mathematician E. T. Bell.)
Determine the number of different equivalence relations 69. Use Exercise 68 to find the number of different equiv-

on a set with four elements by listing them.
Do we necessarily get an equivalence relation when we

8.6 Partial Orderings

alence relations on a set with n elements, where n is a
positive integet not exceeding 10.

Introduction

e
T

DEFINITION 1

EXAMPLE 1

xir
Enmmmpies

We often use relations to order some or all of the elements of sets. For instance, we order words
using the relation containing pairs of words (x, ¥), where x comes before y in the dictionary.
We schedule projects using the relation consisting of pairs (x, ), where x and y are tasks ina
project such that x must be completed before y begins. We order the set of integers using the
relation containing the pairs (x, y), where x is less than y. When we add all of the pairs o_f.the
form (x, x) to these relations, we obtain a relation that is reflexive, antisymmetric, and transitive:
These are properties that characterize relations used to order the elements of sets.

A relation R on a set S is called a partial ordering or partial order if it is reflexive, antis
metric, and transitive. A set S together with a partial ordering R is called a partially or dered
set, or poset, and is denoted by (S, R). Members of S are called efements of the poset.

We give examples of posets in Examples 1-3.

Show that the “greater than or equal” relation (=) is a partial ordering on the set of integers:
-

Solution: Because a > a for every integer ¢, > is reflexive. If a > b and b Za’, i

a = b. Hence, > is antisymmetric. Finally, > is transitive because a > b and bzc¢

that @ > ¢. Tt follows that > is a partial ordering on the set of integers and z, z) =
poset.
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G G G G G G
@
4 D F D F F| D F m :/'
D F
B B
B A ¢ E c E E E
A C E Minimal
element A C E F D G
FIGURE 10 The | chosen

Hasse Diagram for
Seven Tasks.

EXAMPLE 27 A development project at a computer company requires the completion of seven tasks. Some of
these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up
by considering task X < task ¥ iftask ¥ cannot be started until task X has been completed. The
Hasse diagram for the seven tasks, with respect to this partial ordering, is shown in Figure 10.
Find an order in which these tasks can be carried out to complete the project.

Solution: An ordering of the seven tasks can be obtaineﬁ by performing a topological sort. The
steps of a sort are illustrated in Figure 11. The result of this sort, A < C < B < E < F < D <
G, gives one possible order for the tasks.

Exercises

FIGURE 11 A Topological Sort of the Tasks.

|

1. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0,0),(1,1),(2,2),(3,3)}
b) {(0,0), (1, 1),(2,0),(2,2),(2,3).(3,2). (3, 3)}
¢ {(0,0),(1,1),(1,2),(2,2),3,3)}
d) {(0,0),(1,1),(1,2),(1,3),(2,2),(2,3), (3, 3)}
e) {(0,0),(0,1),(0,2),(1,0)(1,1),(1,2) (2,0,
(2, 2):(3,3)}
2. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0,0),(2,2),3,3)}
b) {{0,0),(1,1),(2,0),(2,2),(2,3),(3,3)}
) {(0,0),(1, 1), (1,2),(2,2),(3,1),(3,3)}
d) E:(,’O;)); (1, 1), (1,2), (1, 3), (2, 0), (2, 2),(2, 3), (3, 0),
e) {(0.0), (0, 1),(0,2),(0,3), (1,0, (1, 1), (1,2). (1, 3),
(2,0), (2,2),3,3)}
3. Is (S, R) a poset if S is the set of all people in the world
and (@, ) € R, where a and b are people, if
a) a is taller than 5?
b) a is not taller than 5?7

. Is (S, R) a poset if § is the set of all people in the world

. Which of these are posets?
. Which of these are posets?

. Determine whether the relations represented by hes

¢) a = b or a is an ancestor of b?
d) @ and b have a common friend?

and (a, b) € R, where a and b are people, if
a) « is no shorter than 57
b) a weighs more than b7

€} a = b or a is a descendant of b?
d) @ and b do not have a common friend?

2 Z,=) b &P oEZx )&
D R=) b R< 9 R bR
zero—one matrices are partial orders.

11 il
a (1 10 by [0 1 0
00 1 0 0 1

[g]
—

1
_— O
— D = =
(==
—_—— O O



zero—ohe matrices are partial orders.

1 01 100
B) [0 1 0
101

—
<

a) |1
0 0 1

—_

1
0
(:)0

—_—0 = O
—_— O O

| 1 0

In Bxercises 9-11 determine whether the relation with the
directed graph shown is a partial order.

9. 10.

A

’n' s61
N 8. Determine whether the relations represented by these
0

11.

O

~ 12, Let (S, R) be a poset. Show that (S, R™') is also a poset,
where R ! is the inverse of R. The poset (S, R ') is called
the dual of (S, R).
13. Find the duals of these posets.
a) ({0, 1,2}, =) b) (Z,>)
) (P(Z), 2) d) (Z*,1)
14. Which of these pairs of elements are comparable in the
poset (Z*, )?
- @) 515 b) 6,9 o816 d) 7,7
15. Find two incomparable elements in these posets.
=) (P10, 1,2)), ©) b) ({1.2.4,6,8}, 1)
6. Let S = {1,2,3,4}. With respect to the lexicographic
order based on the usual “less than™ relation,
a) find all pairs in S x § less than (2, 3).
b) find all pairs in S x S greater than (3, 1).
. €) draw the Hasse diagram of the poset (S x S, <).
U7, Find the lexicographic ordering of these n-tuples:
a) (1,1,2),(1,2,1) b) (0,1,2,3),(0,1,3,2)
R, 0.1,0,1),(0,1,1,1,0)
% Find the lexicographic ordering of these strings of lower-
Case English letters:
'a) quack, quick, guicksilver, quicksand, quacking
; ) open, opener; opera, operand, opened
"3_). 200, zero, zoom, zoology, zoological
11?119% gie lexicographic ordering of the bit strings 0, 01,
,' =< i 010, 011, 0001, and 0101 based on the ordering

W ihe Hasse diagram for the “greater than or equal t0”
bnon {0, 1,2, 3, 4, 5.

: the Hasse diagram for the “less than or equal to”
onon (0,2, 5, 10, 11, 15},
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22. Draw the Hasse diagram for divisibility on the set
a) {1,2,3,4,5,6). b) {3,5,7,11, 13,16, 17}.
¢) {2,3,5,10,11,15,25}. d) {1,3,9,27, 81, 243).
23. Draw the Hasse diagram for divisibility on the set
a) {1,2,3,4,5,6,7,8. b) {1,2,3,5,7,11,13}.
¢) {1,2,3,6,12,24,36,48}.
d) {1,2,4,8, 16,32, 64}.
24. Draw the Hasse diagram for inclusion on the set P(S),
where § = {a, b, ¢, d}.
In Exercises 25-27 list all ordered pairs in the partial ordering
with the accompanying Hasse diagram.

25. 26.

izl
=
L
I~

27.

e
]
Sy

b a c

Let (S, <) be a poset. We say that an element y € § covers
an element x € S if x < y and there is no element z € § such
that x < z < v. The set of pairs (x, ) such that y covers x is
called the covering relation of (S, <).

28. What is the covering relation of the partial ordering
{(a, b) | a divides b} on {1, 2,3, 4,06, 12}?

29. What is the covering relation of the partial ordering
{(A,B)| A C B} on the power set of S, where § =
{a, b, c)?

30. Show that the pair (x, y) belongs to the covering relation
of the finite poset (§, =) if and only if x is lower than y
and there is an edge joining x and y in the Hasse diagram
of this poset.

31. Show that a finite poset can be reconstructed from its cov-
ering relation. [Hins: Show that the poset is the reflexive
transitive closure of its covering relation.]

32. Answer these questions for the partial order represented
by this Hasse diagram.
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33,

34.

35.

36.

37.

38.

39.

40.
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a) Find the maximal elements.

b) Find the minimal elements.

¢) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {«, b, ¢}.

f) Find the least upper bound of {a, b, c}, if it exists.

g) Find all lower bounds of { /, g, /}.

h) Find the greatest lower bound of { f, g, 2}, if it exists.

Answer these questions for the poset ((3,5,9, 15,
24,45} .

a) Find the maximal elements.

b) Find the minimal elements.

¢) Is there a greatest clement?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.

f) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}, if it exists.

Answer these questions for the poset ({2,4,6,9, 12,
18,27, 36, 48, 60, 72}, ).

a) Find the maximal elements.

b) Find the minimal elements.

¢) Is there a greatest element?

d) Is there a least element?

¢) Find all upper bounds of (2, 9}.

f) Find the least upper bound of {2, 9}, if it exists.

g) Find all lower bounds of {60, 72}.

h) Find the greatest lower bound of {60, 72}, if it exists.

Answer these questions for the poset ({{1}, {2}, (4}, {1, 2},
(1.4} (2,4], 3,45 {1, 3,4} 2,.3,4}1,9).

a) Find the maximal elements.

b) Find the minimal elements.

¢) Is there a greatest element?

d) Ts there a least element?

e} Find all upper bounds of {{2}, {4}}.

f) Find the least upper bound of {{2}, {4}}, if it exists.

g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},
if it exists.

Give a poset that has

a) aminimal element but no maximal element.

b) amaximal element but no minimal element.

¢) neither a maximal nor a minimal element.

Show that lexicographic order is a partial ordering on the
Cartesian product of two posets.

Show that lexicographic order is a partial ordering on the
set of strings from a poset.

Suppose that (S, 1) and (T. ={,) are posets. Show that

(S x T, =) is aposet where (s, 1) < (¢, v) if and only if

s uand? ;.

a) Show that there is exactly one greatest element of a
poset, if such an element exists.

b) Show that there is exactly one least element of a poset,
if such an element exists.
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41. a) Show that there is exactly one maximal element in 4
poset with a greatest element,
b) Show that there is exactly one minimal element in 3
poset with a least element.
42, a) Show that the least upper bound of a set in a poset {5
unique if it exists.
b) Show that the greatest lower bound of a set in a poset
is unique if it exists.
43, Determine whether the posets with these Hasse diagrams
are lattices.

a) b) c)
g h i
f ! g 2
d e d 4 %
b c b 3 ) i

a
a

44. Determine whether these posets are lattices.

a) ({1,3,6,9,12}4, ) by ((1,5,25,125). )

) (Z,2)

d) (P(S), 2); where P(S) is the power set of a set §
45. Show that every nonempty finite subset of a lattice has a

least upper bound and a greatest lower bound.

46. Show thatifthe poset (S, R)is alattice then the dual posel
(S, R~} is also a lattice.

47. Ind company, the lattice model of information flow is used
to control sensitive information with security classes rep=
resented by ordered pairs (A, C). Here A is an authority
level, which may be nonproprietary (0), proprietary (1)3
restricted (2), or registered (3). A category C is asubseto
the set of all projects {Cheetah, fmpala, Pumat. (Naﬂ’lei
of animals are often used as code names for projects I
companies. ) :
a) Is information permitted to flow from (Proprieldfis

{Cheetah, Puma)) into (Restricted, {Pumal)? .
b) Ts information permitted to flow from (Resiricle&
{Cheetah)) into (Registered, {Cheetah, Tmpal'ﬂ}'ﬂ |
¢) Into which classes is information from (Propriefdfs
{ Cheetah, Puma)) permitted to flow? 5
d) From which classes is information permitted 10 3
into the security class (Restricted, [Impala, Pumapl

48. Show that the set S of security classes (4, C) 158 lattice
where A is a positive integer representing an aUSE
class and C is a subset of a finite set of compartments
(AL, C1) < (A3, Cy) ifand only if A; < Arand CLER
[Hint: First show that (S, <) is a poset and then
that the least upper bound and greatest Jower bo :
(A, Cy) and (As, Cy) are (max(A, Az), C1UCHE
(min{A;, A2), C, N Ca), respectively.] )

#49, Show that the set of all partitions of a st )
lation P, = P; if the partition Py is a reﬁneme
partition P, is a lattice. (See the preamble to Bxere
of Section 8.5.)
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50. Show that every totally ordered set is a lattice.

51. Show that every finite lattice has a least element and a
greatest element.

52, Give an example of an infinite lattice with
a) neither a least nor a greatest element.

b) aleast but not a greatest element.
¢) a greatest but not a least element,
d) both aleast and a greatest element.
. Verify that (ZTx ZT, =) is a well-ordered set, where <
is lexicographic order, as claimed in Example 8.
. Determine whether each of these posets is well-ordered.
a) (S, <), where § = {10, 11,12, ..}
b) (Q N[0, 1], <) (the set of rational numbers between 0
and 1 inclusive)
€) (8. <), where S is the set of positive rational numbers
with denominators not exceeding 3
d) (Z~, =), where Z~ is the set of negative integers

A poset (R, =) is well-founded if there is no infinite de-

creasing sequence of elements in the poset, that is, elements

X, %2, ..., % such that -+ <x, <--+ < x3 <x;. A poset

(R, <) is dense if forallx € S and y € § with x < y, there

isan element z € R such thatx <z < y.

55. Show that the poset (Z, <), where x < y if and only
if |x| < |p| is well-founded but is not a totally ordered
set.

56. Show that a dense poset with at least two elements that
are comparable is not well-founded.

57, Show that the poset of rational numbers with the usual
“less than or equal to” relation, (Q, <), is a dense poset.

*88. Show that the set of strings of lowercase English let-
ters with lexicographic order is neither well-founded nor
dense.

59. Show that a poset is well-ordered if and only if it is totally
ordered and well-founded.

0. Show that a finite nonempty poset has a maximal element.

61, Fmd a compatible total order for the poset with the Hasse
diagram shown in Exercise 32.

2. Find a compatible total order for the divisibility relation
- Ontheset{1,2,3,6,8, 12,24, 36}.

Key Terms and Results
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63. Find an order different from that constructed in Ex-

ample 27 for completing the tasks in the development
project.

64. Schedule the tasks needed to build a house, by specifying
their order, if the Hasse diagram representing these tasks
is as shown in the figure.

Completion

_— Interior fixtures
Exlerior fixtures

- Interior painting

Flooring Exterior painting

Plumbirig
Exterior siding
Roof
Framing

Foundation

65. Find an ordering of the tasks of a software project if the
Hasse diagram for the tasks of the project is as shown.

Completion

B test

Develop module A Integrate modules

Write Develop module B

documentation Develop module €

Develop system Set up
requirements test sites

Write functional requirements

Determine user needs

'ERMS

Aty relation from A to B: a subset of A x B
ition on : 5 binary relation from A to itself (i.c., a subset
Of A % 4)

° R

: Composite of £ and §

:‘ a relation R on A is reflexive if (a2, @) € R for all

Simetric, arelation
SR (a, p) e p

R on Ais symmetricif (b, @) € R when-

antisymmetric: a relation R on A is antisymmetric if ¢ = b
whenever (¢, b) € R and (b, a) € R

transitive: a relation R on A is transitive if (a, b) € R and
(b, ¢) € R implies that (a,¢) € R

n-ary relation on Ay, A4z,...,A4,: a subset of A;x
Ay X -0 X Ay

relational data meodel: a model for representing databases
using n-ary relations

primary key: a domain of an n-ary relation such that an
n-tuple is uniquely determined by its value for this
domain
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4. a) How many reflexive relations are there on a set with
elements?

b) How many symmetric relations are there on a set with
n elements?

¢) How many antisymmetric relations are there on a set
with 7 elements?

5. a) Explain how an n-ary relation can be used to represent
information about students at a university.

b) How can the 5-ary relation containing names of stu-
dents, their addresses, telephone numbers, majors, and
grade point averages be used to form a 3-ary relation
containing the names of students, their majors, and
their grade point averages?

¢) How can the 4-ary relation containing names of stu-
dents, their addresses, telephone numbers, and majors
and the 4-ary relation containing names of students,
their student numbers, majors, and numbers of credit
hours be combined into a single n-ary relation?

6, a) Explain how to use a zero—one matrix to represent a
relation on a finite set.

b) Explain how to use the zero—one matrix representing a
relation to determine whether the relation is reflexive,
symmetric, and/or antisymmetric.

7. a) Explain how to use a directed graph to represent a
relation on a finite set.

b) Explain how to use the directed graph representing a
relation to determine whether a relation is reflexive,
symmetric, and/or antisymmetric.

8. a) Define the reflexive closure and the symmetric closure
of a relation.

b) How can you construct the reflexive closure of a
relation?

¢) How can you construct the symmetric closure of a
relation?

d) Find the reflexive closure and the symmetric closure
of the relation {(1, 2), (2, 3), (2,4), (3, 1)} on the set

12,3, 4.

% ) Define the transitive closure of a relation.

b) Can the transitive closure of a relation be obtained by
ncluding all pairs (e, ¢) such that (a, b and (b, ¢) be-

 long to the relation?

€) Describe two algorithms for finding the transitive clo-
sure of a relation.

@) Find the transitive closure of the relation

(1), (1,3), 2,1), (2,3), (2,4), (3.2), (3.4), (4,1)}.

t_‘.- plementary Exercises
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10. a) Define an equivalence relation.
b) Which relations on the set {a, b, ¢, d} are equivalence
relations and contain (a, b) and (b, d)?
11. a) Show that congruence modulo m is an equivalence re-
lation whenever m is a positive integer.
b} Show that the relation {(e, ) | @ = £b (mod 7)} is an
equivalence relation on the set of integers.
12. a) What are the equivalence classes of an equivalence
relation?
b) What are the equivalence classes of the “congruent
modulo 57 relation?
¢) What are the equivalence classes of the equivalence
relation in Question 11(b)?

13. Explain the relationship between equivalence relations on
a set and partitions of this set.
14. a) Define a partial ordering.
b) Show that the divisibility relation on the set of positive
integers is a partial order.
15. Bxplain how partial orderings on the sets A; and Aj
can be used to define a partial ordering on the set
Al x Az.
16. a) Explainhow to construct the Hasse diagram of a partial
order on a finite set..
b) Draw the Hasse diagram of the divisibility relation on
the set {2, 3, 5,9, 12, 15, 18}.
17. a) Define a maximal element of a poset and the greatest
element of a poset.
b) Give an example of a poset that has three maximal
elements.
¢) Give an example of a poset with a greatest element.
18. a) Define a lattice.
b) Give an example of a poset with five elements that is
a lattice and an example of a poset with five elements
that is not a lattice.
19. a) Show that every finite subset of a lattice has a greatest
lower bound and a least upper bound.
b) Show that every lattice with a finite number of elements
has a least element and a greatest element.
20. a) Define a well-ordered set.
b) Describe an algorithm for producing a well-ordered set
from a partially ordered set.
¢) Explain how the algorithm from (b) can be used to
order the tasks in a project if each task can be done
only after one or more of the other tasks have been
completed.

Let §be the set of all strings of English letters. Determine
er these relations are reflexive, irreflexive, symmet-
s ANtisymmetric, and/or transitive.

A R =

(@, b) | a and b have no letters in common)}
*2={(a, b) | a and b are not the same length}
3={(a, b) | a is longer than b}

Struct a relation on the set {a, b, ¢, d} that is

)
A
‘)

a) reflexive, symmetric, but not transitive.

b) irreflexive, symmetric, and transitive.

¢) irreflexive, antisymmetric, and not transitive.

d) reflexive, neither symmetric nor antisymmetric, and
transitive.

e) neither reflexive, irreflexive, symmetric, antisymmet-
ric, nor transitive.
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19, Devise an algorithm, based on the concept of interior ver-

tices, that finds the length of the longest path between two

vertices in a directed graph, or determines that there are

arbitrarily long paths between these vertices.

. Which of these are equivalence relations on the set of all

people?

a) {(x, ) | x and y have the same sign of the zodiac}

b) {{(x,)) | x and y were born in the same year}

¢) {(x,») | x and y have been in the same city}

. How many different equivalence relations with exactly

three different equivalence classes are there on a set with

five elements?

. Show that {(x, ) | x — ¥ & Q] is an equivalence relation

on the set of real nmumbers, where Q denotes the set of

rational numbers. What are [1], [%], and [7]?

. Suppose that Py ={A;, As,..., Anl and P =
{By, By, ..., By} are both partitions of the set §. Show
that the collection of nonempty subsets of the form
A; N B; is a partition of § that is a refinement of both P,
and P (see the preamble to Exercise 49 of Section 8.5).

. Show that the transitive closure of the symmetric closure
of the reflexive closure of a relation R is the smallest
equivalence relation that contains R.

5. Let R(S) be the set of all relations on a set §. Define the
relation =< on R(S)} by R; = R, if Ry € R, where Ry
and R, are relations on S. Show that (R(S), =) is aposet.

. Let P(S) be the set of all partitions of the set S. Define the
relation = on P(S) by Py = P, if Py is a refinement of
P, (see Exercise 49 of Section 8.5). Show that (P(S), =)
is a poset.

. Schedule the tasks needed to cook a Chinese meal by
specifying their order, if the Hasse diagram representing
these tasks is as shown here.

Arrange on platters

Cook in wok

Cut ginger
and garlic

Find recipe
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A subset of a poset such that every two elements of this sub-
set are comparable is called a chain. A subset of a poset is
called an antichain if every two elements of this subset are
incomparable.

28. Find all chains in the posets with the Hasse diagrams
shown in Exercises 25-27 in Section 8.6.

29. Find all antichains in the posets with the Hasse diagrams
shown in Exercises 25-27 in Section 8.6.

30. Find an antichain with the greatest number of elements
in the poset with the Hasse diagram of Exercise 32 in
Section 8.6.

. Show that every maximal chain in a finite poset (S, <)
contains a minimal element of §. (A maximal chain is a
chain that is not a subset of a larger chain.)

. Show that every finite poset can be partitioned into &
chains, where k is the largest number of elements in an
antichain in this poset.

. Show that in any group of mn + 1 people there is either a
list of i + 1 people where a person in the list (except for
the first person listed) is a descendant of the previous per-
son on the list, or there are n + 1 people such that none of
these people is a descendant of any of the other » people.
[Hint: Use Exercise 32.]

Suppose that (S, =) is a well-founded partially ordered set.

The principle of wellfounded induction states that P(x) is

true forall x € S ifVa(¥y(yv < x — P(y)) — P(x)).

34. Show that no separate basis case is needed for the prin-
ciple of well-founded induction. That is, P(u) is true for
all minimal elements » in S if Yx(Yy(y < x — P(y)) —
P{x)).

*35, Show that the principle of well-founded induction is valid.
A relation R on a set A is a quasi-ordering on A if R is
reflexive and transitive.

36. Let R be the relation on the set of all functions from Z* to
7" such that ( f, g) belongs to R if and only if f is O(g).
Show that R is a quasi-ordering.

. Let R be a quasi-ordering on a set A. Show that R M R™!
is an equivalence relation.

. Let R be a quasi-ordering and let § be the relation on the
set of equivalence classes of R N R~ such that (C, D)
belongs to S, where C and D are equivalence classes of
R,ifand only if there are elements ¢ of C and & of D such
that (¢, d) belongs to R. Show that § is a partial ordering.

Let I, be a lattice. Define the meet (A) and join (V) operations

by x Ay = glb{x, y)and x v y = lub(x, ¥).

39, Show that the following properties hold for all elements
x, y, and z of a lattice L.

a) xAy=yAx and xVy=yVvx (commutative
laws)

b) xANAz=xA(prz) and (xVy)Vz= xV
(y v z) (associative laws)

¢) x Afxvy)=x and x V(x Ay)=x (absorption
laws)

d) x Ax = x and x vV x = x (idempotent laws)
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3.

10.

11.

12.

13.

14.

. Show that a subset of an antisymmetric relation is also garian mathematician Paul Erdds, it is 2 if this mam
antisymmetric. ematician did not write a joint paper with By H
. Let R beareflexiverelation onaset A. Show that R € R, wrote a joi.nt paper with someone who wrote a joiny
. Suppose that Ry and R, are reflexive relations on a set A. paper with Erdos, and so on (except that the Pyl
Show that Ry @ R, is irreflexive. number of Erdés himselfis 0). Give a definition of ghe

. Suppose that R} and R are reflexive relations on a set A.

Is R N Ry also reflexive? Is Ry U R» also reflexive? 15. a) Give an example to show that the transitive clogupe gt

. Suppose that R is a symmetric relation on a set A. Is R the symmetric closure of a relation is not necessariiy

also symmetric? the same as the symmetric closure of the trangjy |
closure of this relation. \

. Let R, and R, be symmetric relations. Is By M Rz also

Show that the relation R on ZxZ defined by b) Describe the relation R*.
(a,b)R(c,d)ifand only if @ +d = b + c is an equiva- ¢) The Erdds number of a mathematician jg | if th
lence relation. mathematician wrote a paper with the prolifie y

Erds number in terms of paths in R.

symmetric? Is R, U R; also symmetric? b) Show, however, that the transitive closure of the sy
A relation R is called cireular if @ R b and bR ¢ imply that metric closure of a relation must contain the symmeteie
eRa. Show that R is reflexive and circular if and only if closure of the transitive closure of this relation,

it is an equivalence relation. 16. a) Let S be the set of subroutines of a computer pre
Show that a primary key in an r-ary relation is a primary gram, Define the relation R by PR Q if subroutine I
key in any projection of this relation that contains this key calls subroutine Q during its execution. Describe the
as one of its fields. transitive closure of R. .
Is the primary key in an n-ary relation also a primary b) For which subroutines P does (P, P) belong to the
key in a larger relation obtained by taking the join of this transitive closure of R?

relation with a second relation? ¢) Describe the reflexive closure of the transitive closun
Show that the reflexive closure of the symmetric closure of R. . _
of a relation is the same as the symmetric closure of its 17. Suppose that B and § are relations on a set A with & s
reflexive closure. such that the closures of R and S with respect to a props
Let R be the relation on the set of all mathematicians that erty P both exist. Show that the closure of R with respees
contains the ordered pair (@, b) if and only if @ and b have to P is a subset of the closure of § with respect to P
written a paper together. 18. Show that the symmetric closure of the union of twa i
a) Describe the relation R2. lations is the union of their symmetric closures.

PAUL ERDOS (1913-1996) Paul Erdds, born in Budapest, Hungary, was the son of two high schook
mathematics teachers. He was a child prodigy; at age 3 he could multiply three-digit numbers in his "
and at 4 he discovered negative numbers on his own. Because his mother did not want to expose him 10
contagious diseases, he was mostly home-schooled. At 17 Erdés entered EStvés University, graduating 1088
years later with a Ph.D. in mathematics. After graduating he spent four years at Manchester, England 08 &
postdoctoral fellowship. In 1938 he went to the United States because of the difficult political situaliGhi
Hungary, especially for Jews. He spent much of his time in the United States, except for 1954 to 1962, whelk
he was banned as part of the paranoia of the McCarthy era. He also spent considerable time in Israel. |
Trdés made many significant contributions to combinatorics and to number theory. One of thr-; discovert
of which he was most proud is his elementary proof (in the sense that it does not use any complex analysis) of the Primeé Numie
Theorem, which provides an estimate for the number of primes not exceeding a fixed positive integer. He also participated in 1
modern development of the Ramsey theory. . "
Erdés traveled extensively throughout the world to work with other mathematicians, visiting conferences, universitics: S
research laboratories. He had no permanent home. He devoted himself almost entirely to mathemnatics, traveling from one IMEsss
matician to the next, proclaiming “My brain is open.” Exdds was the author or coauthor of more than 1500 papers and hﬂﬁ ” ;
than 500 coauthors. Copies of his articles are kept by Ron Graham, a famous discrete mathematician with whom he collaboral
extensively and who took care of many of his worldly needs. i
Erdés offered rewards, ranging from $10 to $10,000, for the solution of problems that he found particularly interesting, ;
size of the reward depending on the difficulty of the problem. He paid out close to $4000. Erdds had his own special languag;' "
such terms as “epsilon” (child), “boss” (woman), “slave™ (man), “captured” (married), “liberated” (divorced), “Supreme o I
(God), “Sam” (United States), and “Joe™ (Soviet Union). Although he was curious about many things, he concentratled 81m°i v
his energy on mathematical research. He had no hobbies and no full-time job. He never married and apparently rematnec Ccm T
Frdds was extremely generous, donating much of the money he collected from prizes, awards, and stipends for scholarships
worthwhile causes. He traveled extremely lightly and did not like having many material possessions.

with
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40. Show that if x and y are elements of a lattice L, then
xvy=yifandonlyifx Ay =x.

A lattice L is bounded if it has both an upper bound, de-

noted by 1, such thatx =< 1 forall x € I and a lewer bound,

denoted by 0, such that 0 < x forallx € L.

41. Show thatif L is a bounded lattice with upper bound 1 and
lower bound 0 then these properties hold for all elements

xelL.
a) xvli=1 b) xAl=x
¢) xv0=x d)xA0=0

42. Show that every finite lattice is bounded.

A lattice is called distributive if x vy Az)=(x v ) A

(xvzandx A(yVvz)=(x A V(xAz)lorallx, y, and

zin L.

*43. Give an example of a lattice that is not distributive.

44. Show that the lattice (P(S), ) where P(S) is the power
set of a finite set § is distributive.

45, Is the lattice (Z, |) distributive?

The complement of an element ¢ of a bounded lattice L with

upper bound 1 and lower bound 0 is an element b such that

avb=1anda A b=0. Such a lattice is complemented if

every element of the lattice has a complement.

Computer Projects
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46. Give an example of a finite lattice where at leag; one
element has more than one complement and at least Unef
element has no complement.

47. Show that the lattice (P (), €) where P(S) is the power
set of a finite set S is complemented.

*48. Show that if L is a finite distributive lattice, then an gle.
ment of L has at most one complement.

The game of Chomp, introduced in Example 12 in Section | il
can be generalized for play on any finite partially ordered sef
(S, <) with a least element a. In this game, a move consists of
selecting an element x in § and removing x and all elements.
larger than it from §. The loser is the player who is forced 1o
select the least element a.

49. Show that the game of Chomp with cookies arranged -
in an m x n rectangular grid, described in Example |2
in Section 1.7, is the same as the game of Chomp on
the poset (S, |), where § is the set of all positive inte-
gers that divide p™~'¢"~!, where p and ¢ are distinet
primes. 1

50. Show that if (S, <) has a greatest element b, then
a winning strategy for Chomp on this poset exisis.
[Hint: Generalize the argument in Example 12 in Sec-
tion 1.7.]

: 1

Write programs with these input and output.

1. Given the matrix representing a relation on a finite
set, determine whether the relation is reflexive and/or
irreflexive.

2. Given the matrix representing a relation on a finite
set, determine whether the relation is symmetric and/or
antisymmetric.

3. Given the matrix representing a relation on a finite set,
determine whether the relation is transitive.

4. Given a positive integer n, display all the relations on a set
with n elements.

*5, Given a positive integer #, determine the number of tran-
sitive relations on a set with # elements.

*6. Given a positive integer #, determine the number of equiv-
alence relations on a set with n elements.

*7. Given a positive integer n, display all the equiva-
lence relations on the set of the s smallest positive
integers.

8. Given an n-ary relation, find the projection of'this relation
when specified fields are deleted.

9. Given an m-ary relation and an r-ary relation, and a set of

common fields, find the join of these relations with respes
to these common fields, i

10. Given the matrix representing a relation on a finite 8
find the matrix representing the reflexive closure of th
relation.

11. Given the matrix representing a relation on a finite 8¢
find the matrix representing the symmetric closure ofd
relation.

12. Given the matrix representing a relation on a finite §
find the matrix representing the transitive closure 0%
relation by computing the join of the powers of the M
representing the relation. ]

13. Given the matrix representing a relation on a finite §
find the matrix representing the transitive closure 0f
relation using Warshall’s algorithm. '

14. Given the matrix representing arelation ona finite s
the matrix representing the smallest equivalence &8
containing this relation. |

15. Given a partial ordering on a finite set, finda total OTEES
compatible with it using topological sorting.

]
A,
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EXAMPLE 13  Tn ALGOL 60 an identifier (which is the name of an entity such as a variable) consists of a string
of alphanumeric characters (that is, letters and digits) and must begin with a letter, We can use
these rules in Backus—Naur to describe the set of allowable identifiers:

(identifier) ::= (letter) | (identifier) (leiter) | {identifier) (digit)
(letter) i=a |b| --|y |z theellipsis indicates that all 26 letters are included
(digit) :==0|1|2|3|4|5]6]7|8]9

For example, we can produce the valid identifier x99« by using the first rule to replace {identifier)
by (identifier) (letter), the second rule to obtain (identifier)a, the first rule twice to obtain
{identifier) (digit) (digit)a, the third rule twice to obtain (identifier)99a, the first rule to obtain
(letter)99a, and finally the second rule to obtain x99a. <

EXAMPLE 14 What is the BackusNaur form of the grammar for the subset of English described in the
introduction to this section?

Solution: The Backus—Naur form of this grammar is

(sentence) := {noun phrase) (verb phrase)

(noun phrase) := (article) {adjective) (noun) | {ariicle) (noun)
(verb phrase) .= (verb){adverb) | {verh)

{article) ::= a | the
{
{
{
{

adjective) ::= large | hungry

noun) = rabbit | mathematician

verb) 1= eats | hops

adverb) = quickly | wildly <

EXAMPLE 15  Give the Backus—Naur form for the production of signed integers in decimal notation. (A signed
integer is a nonnegative integer preceded by a plus sign or a minus sign.)

Solution: The Backus—Naur form for a grammar that produces signed integers is

(signed integer) = (sign) (integer)

(sign) 1=+ | —

(integer) = (digit) | (digit){integer)

(digity :=01]1|2|3/4]|5]16|7|8|9 «

The Backus—Naur form, with a variety of extensions, is used extensively to specify the
syntax of programming languages, such as Java and LISP; database languages, such as SQL;
and markup languages, such as XML. Some extensions of the Backus—Naur form that are
commonly used in the description of programming languages are introduced in the preamble to
Exercise 34 at the end of this section.

3

L STCses |3 refer to the grammar with start symbol sen- sentence — noun phrase intransitive verb phrase
& set of terminals 77 = {the, sleepy, happy, tortoise, hare, noun phrase — article adjective mnoun

r:;é f”I;mg, quickly, slowly}, set of nonterminals N = {noun noun phrase — article noun

Witigle - iive verb phrase, intransitive verb phrase, transitive verb phrase — transitive verb

Tlicle adiects 2 .
A€icctive, noun, verb, adverb}, and productions: intransitive verb phrase — intransitive verb  adverb

S . s i e g
_ nel_ltene_e — noun phrase  transitive verb phrase intramsitive verb phrase — intransitive verb
OUn phrase article — the
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*6.

adjective — sleepy
adjective — happy

noun — torfoise

noun — hare

transitive verb — passes
intransitive verb — runs
adverb — quickly
adverb — slowly

. Use the set of productions to show that each of these sen-

tences is a valid sentence.

a) the happy hare runs

b) the sleepy tortoise runs quickly

€) the tortoise passes the hare

d) the sleepy have passes the happy tortoise

- Find five other valid sentences, besides those given in

Exercise 1.

. Show that the hare runs the sleepy tortoise is not a valid

sentence,

- Let G=(V, T, 8, P) be the phrase-structure grammar

with V. =1{0,1, 4,5}, T ={0, 1}, and set of produc-
tions P consisting of § — 15, § — 004, A — 0A, and
A= 0.

a) Show that 111000 belongs to the language generated
by G.

b) Show that 11001 does not belong to the language gen-
erated by G.

¢) What is the language generated by G?

. Let G =(V, T, 8, P) be the phrase-structure grammar

with V. ={0,1,4,B, S8}, T =1{0,1}, and set of pro-

ductions P consisting of § — 04, § — 1A, A — 0B,

B—+1A,B—>1.

a) Show that 10101 belongs to the language generated
by G.

b) Show that 10110 does not belong to the language gen-
erated by G.

¢) What is the language generated by G?

Let V ={S§, A, B,a,b} and T = {a, b}. Find the lan-

guage generated by the grammar (V, T, §, P) when the

set P of productions consists of

a) S— AB,A — ab, B — hb.

b) § — AB,S —+ aA, A —a, B — ba

) S— AB,S— AA,A— aB,A— agb,B > b.

d) §— AA, §— B, A — aaA, A — aa, B — bB,
B — b,

e} §S— AB, A — adb, B — bBa,A— ), B — A.

. Construct a derivation of 0°1° using the grammar given

in Example 5.

. Show that the grammar given in Example 5 generates the

set{0"1" |n=0,1,2,...}.

. a) Construct a derivation of 021* using the grammar G,

in Example 6.
b) Construct a derivation of 0*1* using the grammar G,
in Example 6.

12-19

10. a) Show that the grammar G, given in Example 6 gep.
erates the set {071 | m,n =0,1,2,...).
b) Show that the grammar G, in Example 6 generateg
the same set.
11. Construct a derivation of 0°122? in the grammar given in
Example 7.
*12. Show that the grammar given in Example 7 generates the
set {0"1"2" [0 =0,1,2,...}.
13. Find a phrase-structure grammar for each of these
languages.
a) the set consisting of the bit strings 0, 1, and 11
b) the set of bit strings containing only 1s
¢) the set of bit strings that start with 0 and end with |
d) the set of bit strings that consist of a 0 followed by an
even number of 1s
14. Find a phrase-structure grammar for each of these
languages.
a) the set consisting of the bit strings 10, 01, and 101
b) the set of bit strings that start with 00 and end with
one or more 1s
¢) the set of bit strings consisting of an even number of
1s followed by a final 0
d) the set of bit strings that have neither two consecutive
0Os nor two consecutive 1s
*15. Find a phrase-structure grammar for each of these
languages. :
a) the set of all bit strings containing an even number of
0Os and no 1s
b) the set of all bit strings made up of a 1 followed by an
odd number of 0s
¢) the set of all bit strings containing an even number of
0s and an even number of 1s
d) the set of all strings containing 10 or more 0s and no
1s
e) the set of all strings containing more Os than 1s
f) the set of all strings containing an equal number of 08

and Is
g) the set of all strings containing an unequal number of
Osand 1s
16. Construct phrase-structure grammars to generate each of
these sets.
a) {1” | n = 0) b) {10" | n = 0}

¢ {(11)" | n = 0}
17. Construct phrase-structure grammars to generate each of
these sets.
a) (0" | n> 0}
) {(000)" | n = O} ¢
18. Construct phrase-structure grammars to generate each 0
these sets.
a) {01% | n > 0)
b) {0"1* | n = 0}
¢) {0"1"™0" | m > 0and n > 0} ;
19. Let V =({S, A, B,a,b} and T = (a,b}. Determil
whether G = (V, T, S, P) is a type 0 grammar bul 0SS
a type 1 grammar, a type 1 grammar but nof @ IYP€

b) {170 | n > 0}
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grammar, or a type 2 grammar but not a type 3 grammar

if P, the set of productions, is
a) S —+aAB,A — Bb, B — ).
b) $S—ad,A—a, A — b
¢) S — ABa, AB — a.
d) S — ABA, A — aB, B — ab.
e) §S—>DbA,A— B, B —a.
f) S>ad,ad — B, B — aA, A — b.
g) S+, A= b S — A
h) § - AB, B — adb, aAb — b.
i) S—aA.A—bB,B— b, B — A\
j) S—AA— B,B— ).
A palindrome is a string that reads the same backward as
it does forward, that is, a string w, where w = w¥, where
wk is the reversal of the string w. Find a context-free
grammar that generates the set of all palindromes over
the alphabet {0, 1}.
Let G| and G; be context-free grammars, generating the
languages L(G1) and L(G,), respectively. Show that there
is a context-free grammar generating each of these sets.
a) L(G1) U L(Ga) b) L(G1)L(G>)
©) L(Gi)*
Find the strings constructed using the derivation trees
shown here.

sentence

N

noun phrase verb phrase

VAN

article adjective  noun verh adverh
a large mathematician hops wildly
signed integer
/ \
sign integer

RN
+ digit integer

N

9 digit integer

8 digit

7

Construct derivation trees for the sentences in Exercise 1.
Let G be the grammar with V = {a,b,¢,S); T =
a,b, c}; starting symbol S; and productions § — abS,

*28,

*26.

27.

28.

29,

30.

3

32.

33.
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S — bcS, §— bbS, § — a, and S — ch. Construct
derivation trees for

a) hchba.

b) bbbehbba.

¢) bcabbbbbeb,

Use top-down parsing to determine whether each of the
following strings belongs to the language generated by
the grammar in Example 12.

a) baba b) abab

¢) chaba d) bbbecba

Use bottom-up parsing to determine whether the strings
in Exercise 25 belong to the language generated by the
grammar in Example 12.

Construct a derivation tree for —109 using the grammar
given in Example 15.

a) Explain what the productions are in a grammar if the
Backus—Naur form for productions is as follows:

{expression) .= ({expression)) |
(expression) + {expression) |
(expression) * (expression) |
{variable)

(variable) ==x|y

b) Find a derivation tree for (x % y) + x in this grammar,

a) Construct a phrase-structure grammar that generates
all signed decimal numbers, consisting of a sign, either
=+ or —; a nonnegative integer; and a decimal fraction
that is either the empty string or a decimal point fol-
lowed by a positive integer, where initial zeros in an
integer are allowed.

b) Give the Backus—Naur form of this grammar.

¢) Construct a derivation tree for —31.4 in this grammar.

a) Construct a phrase-structure grammar for the set of all
fractions of the form a /b, where a is a signed integer
in decimal notation and & is a positive integer.

b) What is the Backus—Naur form for this grammar?

¢} Construct a derivation tree for +311/17 in this
grammar.

Give production rules in Backus—Naur form for an iden-

tifier if it can consist of

a) one or more lowercase letters,

b) at least three but no more than six lowercase letters.

¢€) one to six uppercase or lowercase letters beginning
with an uppercase letter.

d) a lowercase letter, followed by a digit or an under-
score, followed by three or four alphanumeric charac-
ters (lower or uppercase letters and digits).

Give production rules in Backus—Naur form for the name
of a person if this name consists of a first name, which is
a string of letters, where only the first letter is uppercase;
a middle initial; and a last name, which can be any string
of letters.

Give production rules in Backus—Naur form that gener-
ate all identifiers in the C programming language. In C
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an identifier starts with a letter or an underscore (_) that
is followed by one or more lowercase letters, uppercase
letters, underscores, and digits.

Several extensions to Backus—Naur form are commonly used
to define phrase-structure grammars. In one such extension,
a question mark (?) indicates that the symbol, or group of
symbols inside parentheses, to its left can appear zero or once
(that is, it is optional), an asterisk (*) indicates that the symbol
to its left can appear zero or more times, and a plus (+) indi-
cates that the symbol to its left can appear one or more times.
These extensions are part of extended Backus—Naur form
(EBNF), and the symbols 2, ¥, and 4 are called metacharac-
ters. In EBNF the brackets used to denote nonterminals are
usually not shown.

34. Describe the set of strings defined by each of these sets of

productions in EBNFE.

a) string = L+D7L+

Lui=alblc
D:=0]1

b) string .= sign D+ | D+
sign =+ | —

D:x=0]1]2]3|4|5|6]|7|8]9
¢) string i= Le(D+)?Lx*

Lui=x|y

D=0 1

35. Give production rules in extended Backus—Naur form that
generate all decimal numerals consisting of an optional
sign, a nonnegative integer, and a decimal fraction that
is either the empty string or a decimal point followed by
an optional positive integer optionally preceded by some
number of zeros.

36. Give production rules in extended Backus—Naur form that
generate a sandwich if a sandwich consists of a lower slice
of bread; mustard or mayonnaise; optional lettuce; an op-
tional slice of tomato; one or more slices of either turkey,
chicken, or roast beef (in any combination); optionally
some number of slices of cheese; and a top slice of bread.

12.2 Finite-State Machines with Output

12-12

37. Give production rules in extended BackusNaur form
for identifiers in the C programming language (seq
Exercise 33).

38. Describe how productions for a grammar in extendeq
Backus—Naur form can be translated into a set of pro-
ductions for the grammar in Backus—Naur form.

This is the Backus—Naur form that describes the syntax of

expressions in postfix (or reverse Polish) notation.

(expression) 1= (term) | (term){term){addOperator)
{addOperator) =+ | —

(term)} 1= {factor) | (factor) (factor) (mulOperator)
{mulOperator) =% | /

{factor) = (identifier) | {expression)

(identifier) »=a |b|--- |z

39. For each of these strings, determine whether it is gener-
ated by the grammar given for postfix notation. If it is,
find the steps used to generate the string
a) abext by xy++
d) wxyz—=/ ¢) ade—=*

40. Use Backus—Naur form to describe the syntax of expres-
sions in infix notation, where the set of operators and iden-
tifiers is the same as in the BNF for postfix expressions
given in the preamble to Exercise 39, but parentheses must
surround expressions being used as factors.

41. For each of these strings, determine whether it is gener-
ated by the grammar for infix expressions from Exercise
40. If it is, find the steps used to generate the string.

a) x+y+z b) a/b+c/d
c) mx*(n—+p) d) +m—-n+p—q
e) (m+n)x(p—gq)

42, Let G be a grammar and let R be the relation contain-
ing the ordered pair (wq, w1 ) if and only if w; is directly
derivable from wy in G. What is the reflexive transitive
closure of R?

€) xy—=zk

Introduction

computers communicate.

Many kinds of machines, including components in computers, can be modeled using a structur®
called a finite-state machine. Several types of finite-state machines are commonly used 10 models.
All these versions of finite-state machines include a finite set of states, with a designated
state, an input alphabet, and a transition function that assigns a next state to every state an
pair. Finite-state machines are used extensively in applications in computer science i
networking. For example, finite-state machines are the basis for programs
grammar checking, indexing or searching large bodies of text, recognizing speec
text using markup languages such as XML and HTML, and network protocols that spe

starting
d input
d data
for spell checkings
h, transforming
cify how
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Exercises
1. Draw the state diagrams for the finite-state machines with b)
these state tables.
a)
'3 g
Input Input
State 0 1 0 1
5o 51 ) 0 1
81 S0 83 0 1
82 81 81 0 0 C)
\ |
b)
‘ . f g
Input TInput
State 0 1 0 1
3. Find the ouiput generated from the input string 01110 for
So s ) 0 0 the finite-state machine with the state table in
51 53 5o 1 L a) Exercise 1{a).
k) o 53 0 1 b) Exercise 1(b).
55 5 5 1 0 ¢) Exercise 1(c).

4. Find the output generated from the input string 10001 for
the finite-state machine with the state diagram in
a) Exercise 2(a).

) b) Exercise 2(b).

| ¢) Exercise 2(c).
' f & 5. Find the output for each of these input strings when given
Input Input as input to the finite-state machine in Example 2.
State 0 1 0 1 a) 0111 b) 11011011
¢) 01010101010
Ai) Sy S4 1 1 5 F . { en
0 i 6. Find the output for each of these input strings when g1V
51 %o 53 ; ; as input to the finite-state machine in Example 3.
8 8y 52 1 : a) 0000 b) 101010
83 51 51 ¢) 11011100010
1 0 old-

| : = -l 7. Construct a finite-state machine that models an
‘ fashioned soda machine that accepts nickels, dimes,

| ' quarters. The soda machine accepts change until 35 cents

2. Give the state tables for the finite-state machines with has been put in. It gives change back for a;lyuif:zu:
R T — greater than 35 cents. Then the customer can p el
& tons to receive either a cola, a root beer, or a gNEEL
8. Construct a finite-state machine that models a 1
a) per vending machine that has a door that can be Cf{ '.*"i
only after either three dimes (and any mig of other
coins) or a quarter and a nickel (and any number O
coins) have been inserted. Once the door ¢an beﬂ?:
the customer opens it and takes a paper, closing o pr
No change is ever returned no matter how mrlt]swi‘
money has been inserted. The next customer sta §
credit.
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10.

11.

12

13.

14,

15

16.

17.

18.

19.

. Construct a finite-state machine that delays an input string

two bits, giving 00 as the first two bits of output.

Construct a finite-state machine that changes every other
bit, starting with the second bit, of an input string, and
leaves the other bits unchanged.

Construct a finite-state machine for the log-on procedure
for a computer, where the user logs on by entering a user
identification number, which is considered to be a single
input, and then a password, which is considered to be a
single input. Ifthe password is incorrect, the user is asked
for the user identification number again.

Construct a finite-state machine for a combination lock
that contains numbers 1 through 40 and that opens only
when the correct combination, 10 right, 8 second left, 37
right, is entered. Each input is a triple consisting of a num-
ber, the direction of the turn, and the number of times the
lock is turned in that direction.

Construct a finite-state machine for a toll machine that
opens a gate after 25 cents, in nickels, dimes, or quarters,
has been deposited. No change is given for overpayment,
and no credit is given to the next driver when more than
25 cents has been deposited.

Construct a finite-state machine for entering a security
code into an automatic teller machine (ATM) that im-
plements these rules: A user enters a string of four dig-
its, one digit at a time. If the user enters the correct
four digits of the password, the ATM displays a wel-
come screen. When the user enters an incorrect string
of four digits, the ATM displays a screen that informs
the user that an incorrect password was entered. If a user
enters the incorrect password three times, the account is
locked.

Construct a finite-state machine for a restricted telephone
switching system that implements these rules. Only calls
to the telephone numbers 0, 911, and the digit 1 followed
by 10-digit telephone numbers that begin with 212, 800,
866, 877, and 888 are sent to the network. All other strings
of digits are blocked by the system and the user hears an
eITor message.

Construct a finite-state machine that gives an output of 1
if the number of input symbols read so far is divisible by
3 and an output of 0 otherwise.

Construct a finite-state machine that determines whether
the input string has a 1 in the last position and a 0 in the
third to the last position read so far.

Construct a finite-state machine that determines whether

the input string read so far ends in at least five consecu-
tive 1g,

Construct a finite-state machine that determines whether
the word computer has been read as the last eight charac-

terls in the input read so far, where the input can be any
string of English letters.

:;tMoore machine M = (S, I, O, f, g, o) consists of a finite
L of states,_ an input alphabet I, an output alphabet O, a tran-
On function f that assigns a next state to every pair of a

12.2 Finite-State Machines with Output 803

state and an input, an output function g that assigns an output
to every state, and a starting state s5. A Moore machine can
be represented either by a table listing the transitions for each
pair of state and input and the outputs for each state, or by a
state diagram that displays the states, the transitions between
states, and the output for each state. In the diagram, transi-
tions are indicated with arrows labeled with the input, and the
outputs are shown next to the states.

20.

21.

22.

23.

24,

25.

Construct the state diagram for the Moore machine with
this state table.

f
Input
State 0 1 g
5y ] 82 0
81 53 8o L
8 82 81 1
53 8 hY)) 1

Construct the state table for the Moore machine with the
state diagram shown here. Each input string to a Moore
machine M produces an output string. In particular, the
output corresponding to the input string aja, ... is
the string g(sq)g(s1) - .. g(s%), where sy = f(s;—1, ;) for
i=1,2,...,k

Start

Find the output string generated by the Moore machine in
Exercige 20 with each of these input strings.

a) 0101 b) 111111
¢) 11101110111

Find the output string generated by the Moore machine in
Exercise 21 with each of the input strings in Exercise 22,
Construct a Moore machine that gives an output of 1
whenever the number of symbols in the input string read
so far is divisible by 4.

Construct a Moore machine that determines whether an
input string contains an even or odd number of 1s. The
machine should give 1 as output if an even number of 13
are in the string and 0 as output if an odd number of 1s
are in the string.
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|
FIGURE 8 A Deterministic Automaton Equivalent to the
Nondeterministic Automaton in Example 10.
Exercises

10.

11.

. Let A=1{0,11} and B = {00,01}. Find each of these

sets.

a) AR bh) BA ¢ A* d) B’

. Show that if A is a set of strings, then AP} = #A = @.
. Find all pairs of sets of strings A and B for which

AB = {10,111, 1010, 1000, 10111, 101000}.

. Show that these equalities hold.

a) {A}* ={A}
b) (A*)" = A* for every set of strings A

. Describe the elements of the set A* for these values of A.

a) {10} b {I11} ¢ {0,01} d) {1,101}

. Let V be an alphabet, and let A and B be subsets of V*.

Show that |AB| < |A||B|.

. Let V be an alphabet, and let A and B be subsets of V*

with A € B. Show that A* C B*.

. Suppose that A is a subset of V*, where V is an alphabet.

Prove or disprove each of these statements.

a) A C A® b) if A = A%, theni € A
¢) AlA}l=A d) (A%)* = A"
e) ATA=A* fy |A" = A
. Determine whether the string 11101 is in each of these
sets.
a) {0, 1}* b) {1}1{0F{1}*

c) {L1}{0}*{01} d) {11}*{01}*

e) {111}*{0}*{1} f {L1,0}{00, 101}
Determine whether the string 01001 is in each of these
sets.

a) {0, 1) b) {0} {101}

¢) {010}*{0}*{1} d) {010,011} {00, 01}

e} {00} {0}*{01} f) {01}*{01)"

Determine whether each of these strings is recognized by
the deterministic finite-state automaton in Figure 1.

a) 111 b) 0011 ¢) 1010111 d) 011011011

12,

13.

14.

15.

Determine whether each of these strings is recognized by
the deterministic finite-state automaton in Figure 1.

a) 010 b) 1;101 - ¢y 1111110 d) 010101010
Determine whether all the strings in each of these sets are
recognized by the deterministic finite-state automaton in
Figure 1.

a) {0} b) {0} {0} ¢) {1} {0}

d) {01}* e) {0){1}* ) {1} {0, 1}*
Show thatif M = (S, I, f, 5o, F) is a deterministic finite-
state automaton and f(s, x) = s for the state s € § and
the input string x € I*, then f(s, x*) = s for every non-
negative integer n. (Here x" is the concatenation c_)f n
copies of the string x, defined recursively in Exercise 37in
Section 4.3.)

Given a deterministic finite-state automaton M -
(S, I, £, 50, F), use structural induction and the recursive
definition of the extended transition function f to prové
that £(s,xy) = f(f(s, x), y) for all states s € § and all
strings x € I*and y € I*.

Tn Exercises 16-22 find the language recognized by the given

deterministic finite-state automaton.




19.

20.

21.

23.

24,

25,

26,

Construct a deterministic finite-state automaton that rec-
ogmizes the set of all bit sirings beginning with 01.

Coqstruct a deterministic finite-state automaton that rec-
Ogmzes the set of all bit strings that end with 10.

Construct a deterministic finite-state automaton that rec-

f{gﬂizes the set of all bit strings that contain the string
il

Construct a deterministic finite-state automaton that rec-

Ognizes the set of all bit strings that do not contain three
Consecutive 0s.

217.

28.

29.

30.

31.

32

.

33.

34

35.

36.

37.

38.

39,

40.

41.

42,
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Construct a deterministic finite-state automaton that
recognizes the set of all bit strings that contain exactly
three 0Os.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain at least
three 0s.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain three consec-
utive 1s.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that begin with O or with 11.
Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that begin and end
with 11.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an even num-
ber of 1s.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an odd number
of Os.

Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an even num-
ber of 0s and an odd number of 1s.

Construct a finite-state automaton that recognizes the set
of bit strings consisting of a 0 followed by a string with
an odd number of 1s.

Construct a finite-state automaton with four states that
recognizes the set of bit strings containing an even num-
ber of 1s and an odd number of 0s.

Show that there is no finite-state automaton with two states
that recognizes the set of all bit strings that have one or
more 1 bits and end with a 0.

Show that there is no finite-state automaton with three
states that recognizes the set of bit strings containing an
even number of 1s and an even number of Os.

Explain how you can change the deterministic finite-state
automaton M so that the changed automaton recognizes
the set 7* — L{M).

Use Exercise 39 and finite-state automata constructed in
Example 6 to find deterministic finite-state automata that
recognize each of these sets.

a) the set of bit strings that do not begin with two 0s

b) the set of bit strings that do not end with two Os

¢) the set of bit strings that contain at most one 0 (that is,
that do not contain at least two 0s)

Use the procedure you described in Exercise 39 and the
finite-state automata you constructed in Exercise 25 to
find a deterministic finite-state automaton that recognizes
the set of all bit strings that do not contain the string 101.

Use the procedure you described in Exercise 39 and the
finite-state automaton you constructed in Exercise 29 to
find a deterministic finite-state automaton that recognizes
the set of all bit strings that do not contain three consec-
utive 1s.
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In Exercises 4349 find the language recognized by the given
nondeterministic finite-state automaton.

B O O s ©)
Start 0,1 1 @

50. Find a deterministic finite-state automaton that recognizes

51. Find a deterministic finite-state antomaton that recognizes

#87 Show that there is nofinite-state automaton that recog-
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the same language as the nondeterministic finite-state an-
tomaton in Exercise 43. ]

the same language as the nondeterministic finite-state au-
tomaton in Exercise 44.

52. Find a deterministic finite-state automaton that recognizes -
the same language as the nondeterministic finite-state au-
tomaton in Exercise 45.

53. Find a deterministic finite-state automaton that recognizes
the same language as the nondeterministic finite-state au-
tomaton in Exercise 46.

54. Find a deterministic finite-state automaton that recognizes
the same language as the nondeterministic finite-state au-
tomaton in Exercise 47.

55. Find a deterministic finite-state automaton thatrecognizes
each of these sets. t

a) {0} by {1, 00} ¢) {1"|n=2,3,4,..}

56. Find a nondeterministic finite-state automaton that recog-
nizes each of the languages in Exercise 27, and has fewer
states, if possible, than the deterministic automaton you ‘
found in that exercise: |

nizes the set of bit stririgs containing an equal number of
0s and 1s.

In Exercises 5862 we introduce a technique for construct
ing a deterministic finite-state machine equivalent to a given |
deterministic finite-state machine with the least number of
states possible. Suppose that M = (S, 1, fos0, F)isa finite~
state automaton and that & is a nonnegative integer. Let Ry be
the relation on the set § of states of M such that sRef if and
only if for every input string x with /(x) < & [where/ (x) is the.
length of x, as usual], (s, x)and f(7, x) are both ﬁnallstatﬂaﬁ,"s
or both not final states. Furthermore, let R. be the relation on
the set of states of M such that s R if and only if for every
input string x, regardless of length, f(s,x) and £z, x) are
both final states or both not final states. '

*58, a) Show that for every nonnegative integer ke, Ri 18
equivalence relation on §. We say that two statﬁl‘|
and ¢ are k-equivalent if s Ri?. S
b) Show that R, is an equivalence relation on 5. We s
that two states s and ¢ are *-equivalent if SRyl .
¢) Show thatif s and ¢ are two k-equivalent states oL M
where k is a positive integer, then s and f are 48
(k — 1)-equivalent )
d) Show that the equivalence classes of Ry SICEE.
ment of the equivalence classes of Rk—_l'lfk ;_5: i
itive integer. (The refinement of a partition o'an’L
defined in the preamble to Exercise 49111 Sectt
¢) Show that if s and ¢ are J-equivalent fﬂf ev:ﬂ"}‘ ;
negative integer k, then they are *-equl‘fazﬂ; §

f) Show that all states in a given Ri-equi v
are final states or all are not ﬁnal_states. el
o) Show that if s and # are R*—GC{UW&le“tila p
and f(t, a) are also R.-equivalent for @ o
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*59. Show that there is anonnegative integer n such that the set **61. a) Show that if M is a finite-state automaton, then the

of n-equivalence classes of states of M is the same as the quotient automaton M recognizes the same language
‘ set of (n + 1)-equivalence classes of states of M. Then as M.
‘ show for this integer n, the set of n-equivalence classes b) Show that if M is a finite-state automaton with the
of states of M equals the set of *-equivalence classes of property that for every state s of M there is a string
states of M. x € I” such that f(sy, x) = s, then the quotient au-
The quotient automaton M of the deterministic finite-state tomaton M has the minimum number of states of any ,
automaton M = (S, I, £, 5o, F) is the finite-state automaton finite-state automaton equivalent to A4. -
(S, I, f.[s0]re. F), where the set of states § is the set of 62. Answer these questions about the finite-state automaton
x-equivalence classes of §, the transition function 7 is defined M shown here,

by F([s1r.. a) = [f(s, @)]g, forall states [s] of 3 and input
symbols @ € I, and F is the set consisting of R,-equivalence
classes of final states of M.

*60. a) Show that s and ¢ are O-equivalent if and only if either
both s and ¢ are final states or neither s nor ¢ is a final
state. Conclude that each final state of M, which is an
R.-equivalence class, contains only final states of M.

b) Show that if & is a positive integer, then s and ¢ are k-
equivalent if and only if s and # are (k — 1)-equivalent
and for every input symbola € I, f(s, a) and f(¢, a)
are (k — 1)-equivalent. Conclude that the transition

function f is well-defined. a) Find the k-equivalence classes of M for k =0,1, 2,
¢) Describe a procedure that can be used to construct the and 3. Also, find the *-equivalence classes of M.
quotient automaton of a finite-automaton M. b) Construct the quotient automaton M of M.

12.4 Language Recognition

Introduction |

We have seen that finite-state automata can be used as language recognizers. What sets can be ‘ h
recognized by these machines? Although this seems like an extremely difficult problem, there
is a simple characterization of the sets that can be recognized by finite state automata. This
problem was first solved in 1956 by the American mathematician Stephen Kleene. He showed |
h that there is a finite-state automaton that recognizes a set if and only if this set can be built up ‘ |
from the null set, the empty string, and singleton strings by taking concatenations, unions, and ‘
i Kleene closures, in arbitrary order. Sets that can be built up in this way are called regular sets.
Regular grammars were defined in Section 12.1. Because of the terminology used, it is
not surprising that there is a connection between regular sets, which are the sets recognized by H
finite-state automata, and regular grammars. In particular, a set is regular if and only if it is |
generated by a regular grammar. M
Finally, there are sets that cannot be recognized by any finite-state automata. We will give ‘
an example of such a set. We will briefly discuss more powerful models of computation, such
as pushdown automata and Turing machines, at the end of this section. '

Regular Sets

The regular sets are those that can be formed using the operations of concatenation, union, and
Kleene closure in arbitrary order, starting with the empty set, the empty string, and singleton sets.
We will see that the regular sets are those that can be reécognized using a finite-state automaton. i‘
To define regular sets we first need to define regular expressions.
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Exercises

1. Let T be the Turing machine defined by the five-

tuples: (50,0, s, 1, RY, (s0,1,5,0, R), (s0, B, 51,0, R),
(51,0,5, 1, L), (51,1, 51,0, R), and (s, B, 52,0, L). For
each of these initial tapes, determine the final tape when
T halts, assuming that T begins in initial position.

a)...|B]B|0]0]1|1|B|B|---

b)---IBIBII]O'I]B]BIB’...

C)~-|B]B|1|1]B|o]1[3|...

d)---lB]BlBIBIBIB‘BIB[...

. Let T be the Turing machine defined by the five-
tuples: (59, 0, 51, 0, R), (50,1,51,0, L), (so. B, 51, 1, R),
(S], O,Sg, 1, R), (.S‘], 1,5’1, 1, R), (S]! B,Sz, 0, R), and
(52, B, 53, 0, R). For each of these initial tapes, determine
the final tape when T halts, assuming that 7 begins in
initial position.

5 2 ) N A A 2

T [ [s]a]5] "

| BleJoJolB oo 5]

“Te[#]a]5 3]s e 5]

- What does the Turing machine described by the five-
tuples (So, 0, sa, 0, R), (Sg, I 51, 0, R), (5‘0, B,Sz, B, R),
(51, 0,51,0, R), (51, 1, 50, 1, R), and (s1, B, 55, B, R) do
when given
a) 11 as input?

b) an arbitrary bit string as input?

- What does the Turing machine described by the five-
tuples (s, 0.9, 1, R), (59, 1, s0. 1, R), (sy, B, sy, B, L)
(51, 1,5, 1, R), do when given
a) 101 as input?

b) an arbitrary bit string as input?

- What does the Turing machine described by the five-

l'llplBS (So, I,A’l, 0, R), (S], 1, 81, 1, R), (S[, O, 872, O, R),
(52,0,535,1, L), (s2. 1,82, 1, R), (53, 1,83, 1, L),
(53, 0,54,0, L), (54,1, 54, 1, L), and (s4, 0, 5p, 1, R) do
when given

a) 11 as input?

b) abit string consisting entirely of Is as input?

. Construct a Turing machine with tape symbols 0, 1, and

B that, when given a bit string as input, adds a 1 to the
end of the bit string and-does not change any of the other
symbols on the tape. ’

- Construct a Turing machine with tape symbols 0, 1, and

B that, when given a bit string as input, replaces the first
0 with a 1 and does not change any of the other symbols
on the tape.

- Construct a Turing machine with tape symbols 0, 1, and

B that, given a bit string as input, replaces all Os on the
tape with Is and does not change any of the Is on the
tape.

- Construct a Turing machine with tape symbols 0, 1, and

B that, given a bit string as input, replaces all but the left-
most 1 on the tape with Os and does not change any of the
other symbols on the tape.

. Construct a Turing machine with tape symbols 0, 1, and

B that, given a bit string as input, replaces the first two
consecutive 1s on the tape with 0s and does not change
any of the other symbols on the tape.

- Construct a Turing machine that recognizes the set of all

bit strings that end with a 0.

- Construct a Turing machine that recognizes the set of al]

bit strings that contain at least two Is.

- Construct a Turing machine that recognizes the set of all

bit strings that contain an even number of 1s.

- Show at each step the contents of the tape of the Tur-

ing machine in Example 3 starting with each of these
strings.

a) 0011 b) 00011 ¢) 101100 d) 000111

. Explain why the Turing machine in Example 3 recognizes

a bit string if and only if this string is of the form 0" 17 for
some positive integer 7,
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*16. Construct a Turing machine that recognizes the set
{017 | n = 0}.
*17. Construct a Turing machine that recognizes the set
{07172" | n = 0}.
18. Construct a Turing machine that computes the function

f(n) = r + 2 for all nonnegative integers .

Construct a Turing machine that computes the function

J)=n-3ifn>3and f(m)=0forn=0,1,2 for

all nonnegative integers n.

20. Construct a Turing machine that computes the function
f(n) =n mod 3.

21. Construct a Turing machine that computes the function
Jm)=3ifn>5and f(n) =0ifn =0,1,2, 3, or4.

22, Construct a Turing machine that computes the function
JS(n) = 2n for all nonnegative integers n.

23. Construct a Turing machine that computes the function
f() = 3n for all nonnegative integers #.

24. Construct a Turing machine that computes the function

f(n1,n2) = na + 2 for all pairs of nonnegative integers

ny and n,.

Construct a Turing machine that computes the function

J(r1, n2) = min(ny, ny) for all nonnegative integers »;

and n,.

19

*25.

26. Construct a Turing machine that computes the function
J(r1, n2) = ny + ny 4+ 1 for all nonnegative integers n,
and n».

Suppose that 77 and 75 are Turing machines with disjoint sets
of states §| and S and with transition functions f; and f5,
respectively. We can define the Turing machine 7} 73, the com-
posite of T; and 7%, as follows. The set of states of 7175 is
8] U S,;. T1T; begins in the start state of 5. It first executes
the transitions of T using f; up to, but not including, the step
at which 7' would halt. Then, for all moves for which 7} halts,
it executes the same transitions of 7y except that it moves to
the start state of 75, From this point on, the moves of 7} T; are
the same as the moves of T5.

27. By finding the composite of the Turing machines you con-
structed in Exercises 18 and 22, construct a Turing ma-
chine that computes the function f(n) = 2u + 2.

Key Terms and Results
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28. By finding the composite of the Turing machines you
constructed in Exercises 18 and 23, construct a Turin
machine that computes the function f(n) = 3(n + 2) =
3n+6.

29. Which ofthe following problems is a decision problem?
a) What is the smallest prime greater than n?

b) Is a graph G bipartite?

¢) Given a set of strings, is there a finite-state automaton
that recognizes this set of strings?

d) Given a checkerboard and a particular type of poly-
omino (see Section 1.7), can this checkerboard be tiled
using polyominoes of this type?

30. Which ofthe following problems is a decision problem?

a) Is the sequence ay, a3, .
increasing order?

b) Can the vertices of a simple graph G be colored using
three colors so that no two adjacent vertices are the
same color?

¢} What is the vertex of highest degree in a graph G?

d) Given two finite-state machines, do these machines
recognize the same language?

-+, @y of positive integers in

?@é Let B(n) be the maximum number of 1s that a Turing machine

~ with  states with the alphabet {1, B} may print on a tape that

is initially blank. The problem of determining B(n) for partic-

ular values of n is known as the busy beaver problem. This

problem was first studied by Tibor Rado in 1962. Currently it

is known that B(2) = 4, B(3) = 6, and B(4) = 13, but B(x)

is not known for n > 5; B(n) grows rapidly; it is known that
B(5) > 4098 and B(6) > 1.29 x 10565,

*31. Show that B(2) is at least 4 by finding a Turing machine

with two states and alphabet {1, B} that halts with four

consecutive 1s on the tape.

*%*32. Show that the function B(#) cannot be computed by any
Turing machine. [Hint: Assume that there is a Turing ma-
chine that computes B(n)} in binary. Build a Turing ma-
chine T that, starting with a blank tape, writes » down
in binary, computes B(x) in binary, and converts B(n)
from binary to unary. Show that for sufficiently large 7
the number of states of T is less than B(n), leading to @
contradiction. ]

TERMS

alphabet (or vecabulary): a set that contains elements used
to form strings

language: a subset of the set of all strings over an alphabet

phrase-structure grammar (¥, T, S, P): a description of
a language containing an alphabet V, a set of termi-
nal symbols 7, a start symbol S, and a set of produc-
tions P

the production w — wy: w can be replaced by w; whenever
it occurs in a string in the language

w1 =>w3 (w; is directly derivable from wy): w2 can b,e 0?'
tained from w; using a production to replace a string ¥4
with another string

obtained from

W1 = wy (wy is derivable from wy): wy can be o
ace strings Y

w1 using a sequence of productions to repl
other strings

type 0 grammar: any phrase-structure grammar

4 ich ev
type 1 grammar: a phrase-structure grammar 1 W_lilf;i p ery
production is of the form w; — wj, where w‘c‘l" '
Wy = bwr, where A € N, [, 7, w € (NUT)and W
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e) Define a type 3 grammar, 9. a) What is the Kleene closure of a set of strings?
f) Give an example of a grammar that is not a type 3 b) Find the Kleene closure of the set {11, 0}.
grammar but is a type 2 grammar. 10. a) Define a finite-state automaton.
4. a) Define a regular grammar. b) What does it mean for a string to be recognized by a
- b) Define a regular language. finite-state automaton? \
c) Show that the set {0"1" | m,n=0,1,2,.. }isareg- 11. a) Define a nondeterministic finite-state automaton, \
ular language. b) Show that given a nondeterministic finite-state ay- ‘
5. a) What is Backus—Naur form? tomaton, there is a deterministic finite-state automaton
b) Give an example of the Backus—Naur form of the that recognizes the same language.
grammar for a subset of English of your choice. 12. a} Define the set of regular expressions over a set J.
6. a) What is a finite-state machine? b) Explain how regular expressions are used to represent
b) Show how a vending machine that accepts only quar- regular sets.
ters and dispenses a soft drink after 75 cents has been 13. State Kleene’s Theorem.
deposited can be modeled using a finite-state machine. 14. Show that a set is generated by a regular grammar if and
7. Find the set of strings recognized by the deterministic only if it is a regular set.
finite-state automaton shown here. 15. Give an example of a set not recognized by a finite-state
automaton. Show that no finite-state automaton recog-
| 1 nizes it.
Start : @ - o 16. Deﬁn(lf a Turing @achﬁne. _ _
o T\ 0 \=/ 0,1 d 2 17. Describe how Turing machines are used to recognize sets.
18. Describe how Turing machines are used to compute
8. Construet a deterministic finite-state automaton that rec- number-theoretic functions.
ognizes the set of bit strings that start with 1 and end 19. Whatis an unsolvable decision problem? Give an example
with 1. of such a problem.
Supplementary Exercises
*1. Find a phrase-structure grammar that generates each of 6. Show that the grammar G = (V, T, S, P) with V =
these languages. {0,8}, T = {0}, starting state S, and productions § — 0§
a) the set of bit strings of the form 0713, where n is a and § — 0 is unambiguous.
nonnegative integer 7. Suppose that A and B are finite subsets of V*, where I
b) the set of bit strings with twice as many 0s as s is an alphabet. Is it necessarily true that |AB| = [B Al?
¢) the set of bit strings of the form w2, where w is a bit 8. Prove or disprove each of these statements for subsets A,
string B, and C of V*, where V is an alphabet.
*2 Fm”d a phrase-structure grammar that generates the set a) A(BBUC)=ABUAC
{0 | n =0} b) A(BNC)=ABNAC
For Exercises 3 and4,let G = (V, T, S, P)bethe context-free ¢) (AB)C = A(BC)
grammarwith V = {(,), §, A, B}, T = {(, )), starting symbol d) (AUB) =A*UB* (
§, and productions § — 4,4 — AB,A — B,B — (A),and 9. Suppose that A and B are subsets of V¥, where V is an
B—(,S— A alphabet. Does it follow that A C B if A* € B™ !
3. Construct the derivation trees of these strings. 10. What set of strings with symbols in the set (0, 2L

a) (O) b)) OO o (OON

*4, Show that L(G) is the set of all balanced strings of paren-
theses, defined in the preamble to Supplementary Exercise
55 in Chapter 4.

A context-free grammar is ambiguous if there is a word in
L(G) with two derivations that produce different derivation
trees, considered as ordered, rooted trees.
5. Show that the grammar G =(V,T, S, P) with V =
{0,851, T = {0}, starting state S, and productions § — 05,
§ — 80, and S — 0 is ambiguous by constructing two
different derivation trees for 0°.

The star height 4(E) of a regular expression 0ver the set /18
defined recursively by

11.

)9
represented by the regular expression (2%)(0'U (12N

h(#) = 0;

h(x)=0ifx e I;

h{(E; UEy) = h((EyEs)) = max(h(Eq), A

if E; and E; are regular expressions;

h(E*) = h(E) + 1 if E is a regular expr -
Find the star height of each of these regular exp
a) 0%1
b) 0*1*

ession.



*12.

14.

15.

17,

16.

*18.

c) (0*01)

d) ((0"1))* :

e} (010%)(1*01%)y*((01)*(10)*)*

f) (((((0")1)*0)")1)"

For each of these regular expressions find a regular ex-
pression that represents the same language with minimum
star height.

a) (0°1%)*

b) (0(0170)")"

¢) (0% U (01)* U1H)*

. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input contains
four or more 1s. Then construct a deterministic finite-state
automaton that recognizes this set.

Construct a finite-state machine with output that pro-
duces an output of 1 if the bit string read so far as input
contains four or more consecutive 1s. Then construct a
deterministic finite-state automaton that recognizes this
set.

Construct a finite-state machine with output that pro-
duces an output of 1 if the bit string read so far as input
ends with four or more consecutive 1s, Then construct a
deterministic finite-state automaton that recognizes this
set.

A state s° in a finite-state machine is said to be reach-
able from state s if there is an input string x such that
J(s,x) =¢'. A state s is called transient if there is no
nonempty input string x with f(s,x) =s. A state s is
called a sink if f(s, x) = & for all input sirings x. An-
swer these questions about the finite-state machine with
the state diagram illustrated here.

a) Which states are reachable from s;?

b) Which states are reachable from s,7?

¢) Which states are transient?

d) Which states are sinks?

Suppose that S, 7, and O are finite sets such that |S| = #,

|7 =k, and | O] = m.

a) How many different finite-state machines (Mealy ma-
chines) M = (5,17, O, f,g,50) can be constructed,
where the starting state sy can be arbitrarily chosen?

b) How many different Moore machines M —
(5,1, 0, f, g.5) can be constructed, where the start-
Ing state s¢ can be arbitrarily chosen?

Suppose that S and 7 are finite sets such that S| =n

19.

20.

21.

*22.

*23.
*24.
*25.

*26.

27

*28.

Supplementary Exercises 841

and || = k. How many different finite-state automata

M = (8,1, f, 50, F) are there where the starting state sy

and the subset F of § consisting of final states can be

chosen arbitrarily

a) if the automata are deterministic?

b) ifthe automata may be nondeterministic? (Note: This
includes deterministic automata.)

Construct a deterministic finite-state automaton that is

equivalent to the nondeterministic automaton with the

state diagram shown here,

What is the language recognized by the automaton in Ex-

ercise 197

Construct finite-state:automata that recognize these sets.

a)y 0*(10)* .t

b) (01U I1D*10*(0 U 1)

¢) (001 U(11)y*)*

Findregular expressions that represent the set of all strings

of 0z and s

a) made up of blocks of even numbers of 1s interspersed
with odd numbers of 0s.

b) with at least two consecutive 0s or three consecutive
1s.

¢) with no three consecutive Os or two consecutive ls.

Show that if A is a regular set, then so is A.

Show that if A and B are regular sets, then so is A N B.

Find finite-state automata that recognize these sets of

strings of 0s and 1s.

a) the set of all strings that start with no more than
three consecutive 0s and contain at least two consecu-
tive 1s.

b) the set of all strings with an even number of symbols
that do not contain the pattern 101.

¢) the set of all strings with at least three blocks of two
or more 1s and at least two 0s,

Show that {0%" | n € N} is not regular. You may use the

pumping lemma given in Exercise 22 of Section 12.4.

Show that {17 | p is prime} is not regular. You may

use the pumping lemma given in Exercise 22 of

Section 12.4.,

There is a result for context-free languages analogous to
the pumping lemma for regular sets. Suppose that L(G)
is the language recognized by a context-free language G.
This result states that there is a constant N such that if z
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is a word in L(G) with I{(w) > N, then z can be written
as wvwxy, where [(ywx) < N, I(vx) > 1, and uv'wx'y
belongs to L(G) fori =0,1,2,3,.... Use this result
to show that there is no context-free grammar G with
LGy={0"1"2" |»n=0,1,2,...}.

Computer Projects

*29.

*30.

12-38

Construct a Turing machine that computes the function
f(n1, n2) = max(ny, na).

Construct a Turing machine that computes the func-
tion f(ny,ny) =n2 —ny if ng > ny and f(ny, ny) =0
if 1o << Hj.

Write programs with these input and output.

1.

*4,

Given the productions in a phrase-structure grammar, de-
termine which type of grammar this is in the Chomsky
classification scheme.

. Given the productions ofa phrase-structure grammar, find

all strings that are generated using twenty or fewer appli-
cations of its production rules.

. Given the Backus—Naur form of type 2 grammar, find all

strings that are generated using twenty of fewer applica-
tions of the rules defining it.

Given the productions of a context-free grammar and a
string, produce a derivation tree for this string if it is in
the language generated by this grammar.

. Given the state table of a Moore machine and an in-

put string, produce the output string generated by the
machine.

. Given the state table of a Mealy machine and an in-

put string, produce the output string generated by the
machine.

7. Given the state table of a deterministic finite-state automa-

Computations and Explorations

ton and a string, decide whether this string is recognized
by the automaton.

8. Given the state table of a nondeterministic finite-state au-

*4.

#*10.

11.

12.

*13.

tomaton and a string, decide whether this string is recog-
nized by the automaton.

Given the state table of a nondeterministic finite-state au-
tomaton, construct the state table of a deterministic finite-
state automaton that recognizes the same language.
Given a regular expression, construct a nondeterminis-
tic finite-state automaton that recognizes the set that this
expression represents.

Given a regular grammar, construct a finite-state au-
tomaton that recognizes the language generated by this
grammar. .

Given a finite-state automatdn, construct a regular gram-
mar that generates the language recognized by this
automaton.

Given a Turing machine, find the output string produced
by a given input string,

Use a computational program or programs you have written to do these exercises.

all possible Turing‘ machines with four states and alphabet

1. Solve the busy beaver problem for two states by testing
all possible Turing machines with two states and alphabet {1, B}.
{1, B}. . ;
) : t d finding a busy
*2, Solve the busy beaver problem for three states by testing G Eﬁiﬁ:&gﬁﬁﬁfﬁ%ﬁ?ﬁ(ﬁaz tZ?;; 0. S 5
all possible Turing machines with three states and alphabet '
{1, B}. ##5, Make as much progress as you can toward finding @ busy
*¥3. Pind a busy beaver machine with four states by testing beaver machine with six states.
Writing Projects e

Respond to these questions with essays using outside sources.

1. Describe how the growth of certain types of plants can be

modeled using a Lidenmeyer system. Such a system uses
a grammar with productions medeling the different ways
plants can grow.

2. Describe the Backus—Naur form (and extended Ba:l:l;

Naur form) rules used to specify the syntax o e
gramming language, such as Java, LIS, of ADA, of

database language SQL.






