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A B S T R A C T

We propose an iterative isometric point correspondence method that relies on diffusion distance to handle chal-
lenges posed by commodity depth sensors which usually provide incomplete and noisy surface data exhibiting
holes and gaps. We formulate the correspondence problem as finding an optimal partial mapping between
two given point sets, that minimizes deviation from isometry. Our algorithm starts with an initial rough
correspondence between keypoints, obtained via any point matching technique. This initial correspondence
is then pruned and updated by iterating a perfect matching algorithm until convergence in order to find as
many reliable correspondences as possible. The resulting set of sparse but reliable correspondences then serves
as a base matching from which a dense correspondence set is estimated. We additionally provide a global
intrinsic symmetry detection technique which clusters a point cloud into its symmetric sides. We incorporate
this technique into our point-based correspondence method so as to address the symmetrical flip problem
and to further improve the reliability of our matching results. Our symmetry-aware correspondence method
is especially effective on human shapes with global reflectional symmetry. We hence conduct experiments on
datasets comprising human shapes and show that our method provides state of the art performance over depth
frames exhibiting occlusions, large deformations, and topological noise.

1. Introduction

Depth sensors have become a commodity in the last half-decade,
and this has opened up new opportunities in the field of computer
vision and graphics as well as brought new challenges. Finding cor-
respondences from depth is a key step for the success of various tasks
in 3D computer vision, such as registration (Chang and Zwicker, 2011)
and reconstruction (Liao et al., 2009).

Although the field of 3D shape correspondence has become quite
mature in the last decade, finding reliable correspondences from depth,
especially for non-rigid objects, is still an open problem. The first
challenge is due to noisy data provided by commodity depth sen-
sors, exhibiting holes and large gaps. This makes the estimation of
geodesic distances on the surface geometry very difficult, and most
isometric correspondence methods fail in this case. Moreover, when
objects undergo non-rigid deformation, their topology can change dras-
tically, which makes the computation of geodesic distances inconsistent
between one pose and the other. Second, depth data is incomplete
by acquisition since objects can be sensed only from one direction;
hence correspondences exist only partially. Third, a major intricacy in
correspondence estimation is the symmetrical flip problem, which is
actually inherent to all isometric methods. Fourth, due to holes and
gaps, surface information cannot reliably be triangulated; hence the
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need for point-based matching techniques that are currently less mature
compared to existing mesh-based correspondence techniques.

In this paper, we present a mesh-free point-based method which
can estimate reliable sparse/dense correspondences on non-rigid shapes
undergoing large isometric deformations from noisy and incomplete
depth data. We formulate the correspondence problem as finding an
optimal partial mapping between two given point sets, minimizing
deviation from isometry. We measure deviation from isometry based on
a diffusion-based distance metric that we compute in a robust manner
over noisy point clouds using an approximation of graph Laplacian.
We experimentally show that our method outperforms state of the art
techniques when tested on partial human body depth data.

The main contributions of this work are as follows:

• A nested iterative prune and update correspondence algorithm: We
show that starting from an initial correspondence obtained by any
point matching technique, it is possible to iteratively prune and
update the initial matching, and obtain a set of sparse but reliable
correspondences even with challenging noisy and incomplete data
under occlusion. Our algorithm eliminates the unreliable match-
ings and outputs as many reliable correspondences as possible.
Our sparse correspondence estimation algorithm is presented in
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detail in Section 3.1. A preliminary version of this algorithm was
published in (Küpçü and Yemez, 2017).

• Coarse-to-fine dense point correspondence: We adapt the idea of
patchwise recursive dense matching on complete meshes origi-
nally proposed by Sahillioğlu and Yemez (2011) for computing
dense correspondences on noisy and partial point clouds. To
best of our knowledge, our work is the first to use a coarse-
to-fine strategy for point correspondence. Our dense correspon-
dence algorithm, which is robust and computationally efficient,
is described in Section 3.2.

• A clustering-based method for detecting symmetric sides of a point
cloud: Existing symmetry detection methods rather focus on find-
ing symmetry axes whereas our method explicitly clusters a given
point cloud into symmetric sides. Hence it is more resilient to
noise and partial data, and can easily be incorporated into our
point correspondence algorithm so as to make it symmetry-aware,
as described in Section 4.

• Symmetry-aware point correspondence: We incorporate our
clustering-based symmetry detection method into our point cor-
respondence algorithm to alleviate the symmetric flip problem
which is inherent to all isometric correspondence methods. Our
algorithm is effective especially on (partial) human shapes with
two intrinsically symmetric sides. Symmetry-aware correspon-
dence methods existing in the literature are mostly mesh-based
and rely on symmetry factored embeddings or descriptors
whereas we make use of explicit symmetry cluster information
to resolve ambiguities due to symmetrical flips.

2. Related work

Isometric deformations are the most common forms of non-rigidity.
Most of the existing mesh-based isometric correspondence methods rely
on geodesic distance information (Bronstein et al., 2006; Chen and
Koltun, 2015; Sahillioğlu and Yemez, 2011, 2012, 2014; Van Kaick
et al., 2011). However, conventional ways of computing geodesic dis-
tances such as shortest path algorithms become problematic on noisy
surfaces with holes and gaps. A better alternative for noisy data is
employing diffusion-based distance (Bronstein et al., 2010; Coifman
and Lafon, 2006; Rodola et al., 2012; Sharma et al., 2011; Wang et al.,
2011; Yoshiyasu et al., 2014). Diffusion distance takes into account all
the paths existing between two surface points, thereby reducing the
negative impact of noise, topological changes and incompleteness on
estimation of distances.

The most common and generic approach for non-rigid point corre-
spondence is to match individual surface points based on local shape
descriptors (Johnson, 1997; Rusu et al., 2009; Tombari et al., 2010).
However, since a local approach discards global shape cues such as
isometry, it can easily yield incorrect correspondences especially when
the shapes exhibit large variations in their local geometry, or when
there are many points that are locally similar.

There exist a good number of isometric point correspondence es-
timation techniques that can handle unorganized point cloud data
(Berger and Silva, 2012; Brunton et al., 2014; Guo et al., 2015; Huang
et al., 2008; Kovnatsky et al., 2015; Li et al., 2008; Mateus et al.,
2008; Rodolà et al., 2017; Tevs et al., 2009; Wei et al., 2016). These
methods, except (Berger and Silva, 2012; Guo et al., 2015; Kovnatsky
et al., 2015; Rodolà et al., 2017; Tevs et al., 2009; Wei et al., 2016),
are not actually mesh-free techniques, performing poorly in the case of
noisy and incomplete data since they rely on fitting intermediate mesh-
based representations to point clouds, so that geodesic distances can be
computed.

The mesh-free method presented by Guo et al. (2015) addresses the
correspondence problem through piecewise rigid point registration by
discovering parts in an iterative process. Their method hence relies
on correct estimation of rigid parts as well as an approximation of
geodesic distances by 𝑘-nearest neighbor graph distances, which are

both problematic tasks especially in the case of occlusions as with
depth data provided by commodity sensors. Two other related works
on point-based correspondence are by Tevs et al. (2009) and by Berger
and Silva (2012), where the former relies also on geodesic distances
but within a probabilistic framework, and the latter uses medial diffu-
sion to deal with incomplete data. Although Berger and Silva (2012)
use a diffusion-based metric, the medial axis prior required in their
technique is heavily dependent on shape topology and intolerant to
large missing data, making it inapplicable to partial depth data with
severe occlusions. Another promising point correspondence method is
the learning-based technique proposed by Wei et al. (2016) for dense
correspondence estimation on human models. The method learns how
to extract features which are optimal for the correspondence problem
over a training dataset and then uses nearest neighbor matching to
find dense correspondences. As a learning-based method, it does not
however necessarily generalize well to test data when trained on a
limited dataset.

Another line of correspondence methods is based on the functional
maps framework first introduced by Ovsjanikov et al. (2012). In theory,
given the graph Laplacian of two shapes represented as point clouds
or meshes, these methods can match complete models with resiliency
against missing parts and noise (Kovnatsky et al., 2015), and can even
handle the parts matching problem via matrix completion (Rodolà
et al., 2017). These methods, however, cannot yet explicitly cope with
partial and occluded depth data as provided by commodity sensors.

Probabilistic non-rigid registration techniques also provide us, as a
byproduct, with point correspondences between point clouds (Billings
et al., 2015; Chui and Rangarajan, 2003; Horaud et al., 2011; Jian and
Vemuri, 2011; Ma et al., 2016; Mateus et al., 2008; Myronenko and
Song, 2010; Tam et al., 2013). They find correspondences by optimizing
a global objective to align point sets. Myronenko and Song (2010)
and Ma et al. (2016) introduce non-rigid point registration methods
that estimate parameters of transformations using Gaussian mixture
models. In addition to global cues, Ma et al. (2016) incorporate local
features to take into account the similarity of the neighboring structure
of points. While point registration methods generate correspondences
by matching all the points available, our focus is on finding partial
mappings between point clouds based on isometric cues, with as many
reliable correspondences as possible.

The symmetric flip problem is inherent to all isometric matching
methods. There exist several shape correspondence methods in the
literature, addressing explicitly this problem such as in (Dubrovina
and Kimmel, 2011; Kim et al., 2010; Ovsjanikov et al., 2010, 2012;
Sahillioğlu and Yemez, 2013; Yoshiyasu et al., 2014, 2016; Zhang et al.,
2013), which are all mesh-based. The symmetric flip problem is also
closely related to the problem of symmetry detection. We focus on
intrinsic symmetry, which is addressed in various works with different
applications (Jiang et al., 2013; Lipman et al., 2010; Mitra et al., 2006,
2013; Ovsjanikov et al., 2008; Raviv et al., 2007, 2010a,b; Sipiran et al.,
2014; Wang et al., 2014; Xu et al., 2009, 2012). Rather than detecting
symmetric parts in a scene or an object as in the works cited above,
in this work we tackle the problem of clustering a given point cloud
into ‘‘sides’’ which are globally and intrinsically symmetric such as in
human shapes.

There exist only a few works in the literature, that address the
problem of clustering into symmetric sides (Lipman et al., 2010; Xu
et al., 2009). Xu et al. (2009) propose a voting based method to segment
a model into two symmetric sides. They find point pair sets that vote
for Voronoi boundaries between pairs so as to obtain the best intrin-
sic reflectional curve for each object in the scene. Similarly, Lipman
et al. (2010) apply their intrinsic symmetry detection methodology to
represent global reflectional symmetry with respect to a plane rather
than a curve as in (Xu et al., 2009). To this end, they fit a plane to
the centroids of the symmetry orbits based on an intrinsic symmetry
dissimilarity measure which is calculated using the differences between
the eigenvectors of the Laplacian matrix. For a given point cloud, a
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Fig. 1. Illustration of the main steps involved in our base correspondence algorithm. The output is a set of sparse correspondences. Red and blue lines indicate incorrect and
correct correspondences, respectively.

symmetry plane – even if approximate – can always be found using
their method. Küpçü and Yemez (2017) have used the plane fitting
methodology of Lipman et al. (2010) to find symmetric sides of a point
cloud and thereby to alleviate the symmetric flip problem for point
correspondence estimation. However this plane fitting approach fails
to reliably find symmetric sides for objects with complex motion such
as human models with large deformations.

3. Correspondence algorithm

The inputs to our correspondence algorithm are the source 𝑃 𝑆 and
target 𝑃 𝑇 point clouds obtained from depth frames of the object of
interest. For initialization, we first apply a standard keypoint detection
technique (any point-based 3D keypoint detection algorithm, such as
SIFT (Lowe, 2004) or ISS (Zhong, 2009), can be used for this purpose).
We represent the keypoint sets for the source and target with 𝑆 =
{𝑠1, 𝑠2,… , 𝑠

|𝑆|} and 𝑇 = {𝑡1, 𝑡2,… , 𝑡
|𝑇 |}, respectively, where the number

of detected keypoints usually varies with shape complexity.1 Then, we
match the detected points using any point-based matching algorithm
such as standard descriptor matching (Aldoma et al., 2012; Tombari
et al., 2010; Rusu et al., 2009) and point registration methods (Myro-
nenko and Song, 2010; Ma et al., 2016). The resulting matching serves
as the initial base correspondence set to be further improved. At the
beginning of the correspondence algorithm, we also compute the graph
Laplacian matrices of both point clouds, which we later use to calculate
the diffusion-based distances between keypoints. We also segment the
point clouds into their symmetric sides by using our clustering-based
symmetry detection technique described in Section 4.

3.1. Base correspondence estimation

The initial keypoints 𝑆 and 𝑇 , detected previously, can be recon-
sidered for a better matching based on global isometric clues. For this
purpose, we construct an isometric cost matrix 𝐶, where each entry 𝑐𝑖𝑗
represents the deviation from isometry of a candidate correspondence
pair. To compute deviations from isometry, we need to rely on a set of
known correspondences. We refer to this set as base correspondence,
denoted by 𝐵 = {(𝑏𝑆1 , 𝑏

𝑇
1 ),… , (𝑏𝑆

|𝐵|, 𝑏
𝑇
|𝐵|)}. The set 𝐵 is initially set to 𝐵0,

that is, the correspondence obtained in the preprocessing step.

1 We assume that the shapes to be matched contain repeatable and
distinctive keypoints which might be missing for some certain shape categories
such as those based on simple quadrics.

The isometric cost of matching a keypoint 𝑠𝑖 on the source keypoint
set 𝑆 with 𝑡𝑗 on the target 𝑇 is then calculated by:

𝑐𝑖𝑗 =
1
|𝐵|

∑

(𝑏𝑆𝑙 ,𝑏
𝑇
𝑙 )∈𝐵

|𝑑𝑆 (𝑠𝑖, 𝑏𝑆𝑙 ) − 𝑑𝑇 (𝑡𝑗 , 𝑏𝑇𝑙 )|. (1)

where 𝑑𝑆 (., .) and 𝑑𝑇 (., .) denote diffusion distances between keypoints
(Coifman and Lafon, 2006; Lafon, 2004). The resulting cost matrix 𝐶 is
bipartite, so we can apply the Blossom V algorithm, minimum-weight
perfect matching algorithm of Kolmogorov (2009), to match all the
keypoints from scratch, similar to Sahillioğlu and Yemez (2014). Each
entry 𝑐𝑖𝑗 ∈ 𝐶 is normalized to be in the range [0, 1) by 𝑐𝑖𝑗 ← (1 − 𝑒−𝑐𝑖𝑗 ).
The perfect matching algorithm that we employ requires a square cost
matrix. Thus, we add virtual nodes to the smaller keypoint set and set
the corresponding costs for non-existent pairs to infinity. The perfect
matching algorithm results in a one-to-one mapping 𝐵, from which we
then remove the pairs including the virtual nodes.

We iteratively modify this matching 𝐵 to make it as reliable as
possible. We achieve this goal with a nested loop of pruning and update
iterations. While the inner loop prunes the unreliable correspondences
based on an isometric error criterion, the outer iterations gradually
update the base correspondence set (that was initially set as 𝐵0). At the
end of these iterations, we expect to end up with a partial one-to-one
mapping that establishes a reliable (sparse) correspondence between
keypoints.

We compute the isometric error, 𝐸iso(𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ), of a given correspon-

dence pair (𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) ∈ 𝐵, in terms of its deviation from isometry with

respect to other available pairs in 𝐵:

𝐸iso(𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) =

1
|𝐵| − 1

∑

(𝑏𝑆𝑙 ,𝑏
𝑇
𝑙 )∈𝐵,𝑖≠𝑙

|𝑑𝑆 (𝑏𝑆𝑖 , 𝑏
𝑆
𝑙 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑏

𝑇
𝑙 )| (2)

If (𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) ∈ 𝐵 is a correct matching pair, its isometric error is expected

to be close to zero. Hence the correspondence set 𝐵 can be pruned
by eliminating the pairs having relatively larger errors compared to
the others. The reliability of the isometric error defined in Eq. (2)
depends on the correctness of 𝐵 itself. Thus we perform pruning in an
iterative scheme, one pair (the worst one) at a time, and each time
we reinvoke the diffusion-based perfect matching algorithm with the
pruned base set. At each iteration, we also remove the keypoints of
the eliminated pair from the keypoint sets 𝑆 and 𝑇 . The pruning and
perfect matching tasks are iterated until the gap between maximum
and minimum isometric errors over the pairs becomes small enough
according to a predesignated threshold value 𝜏1.
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The modified correspondence set 𝐵 resulting from the iterative
pruning algorithm is smaller but usually much more reliable than the
input correspondence. Hence it can be used to update the initial base
correspondence for the next run of the iterative pruning algorithm in
the outer loop. At the beginning of each outer iteration, the initial base
correspondence is renewed with the current 𝐵, whereas the keypoint
sets, 𝑆 and 𝑇 , are set back to their original content. Hence, the key-
points that are discarded during iterative pruning due to mismatches
are reconsidered for other possible matches based on a more reliable
estimation of isometric errors. The outer iterations terminate when
the mean isometric error converges, i.e., when there is no further
improvement on the base correspondence set 𝐵. We illustrate the main
steps involved in our base correspondence algorithm in Fig. 1.

3.2. Dense correspondence estimation

In this section, we extend our base correspondence set 𝐵 to a
sequence of denser base correspondences {𝐵𝑘} with increasing levels
of detail using a coarse-to-fine strategy adapted to partial point clouds
as illustrated in Fig. 2.

We initialize the base correspondence set at the coarsest level 𝑘 = 0
with 𝐵0 = 𝐵, and then recursively subdivide the point clouds 𝑃 𝑆

and 𝑃 𝑇 into patches via clustering followed by subsampling. Initially,
𝑃 𝑆,0 = 𝑃 𝑆 and 𝑃 𝑇 ,0 = 𝑃 𝑇 . We cluster the points within each patch
𝑃 𝑘−1
𝑙 at level 𝑘−1 starting from 𝑘 = 1 into subpatches 𝑃 𝑘

𝑖 (dropping the
superscripts 𝑆 and 𝑇 for notational simplicity). This is done by grouping
points 𝑝𝑗 ∈ 𝑃 𝑘−1

𝑙 according to their diffusion distance to the base points
𝑏𝑘−1𝑖 of the previous level patch:

𝑃 𝑘
𝑖 = {𝑝𝑗 ∈ 𝑃 𝑘−1

𝑙 |𝑖 = argmin
𝑚

𝑑(𝑝𝑗 , 𝑏𝑘−1𝑚 )}. (3)

Hence each base point 𝑏𝑘−1𝑖 represents a subpatch 𝑃 𝑘
𝑖 at the next level.

We then sample at most 𝑁𝑆 points as uniformly as possible from each
patch. We denote the subsampled patch by 𝑃 𝑘

𝑖 . For subsampling, we
sort all the points within a patch 𝑃 𝑘

𝑖 in ascending order with respect
to their diffusion distances to the representing base point 𝑏𝑘−1𝑖 , and
uniformly subsample the sorted list. Hence the sampled points tend to
be equally distributed within each patch. If the number of points in 𝑃 𝑘

𝑖
is already less than or equal to 𝑁𝑆 , we set 𝑃 𝑘

𝑖 = 𝑃 𝑘
𝑖 and stop further

recursion for that patch.
The points within each subsampled patch 𝑃 𝑘

𝑖 are then matched
with the points in the corresponding subsampled patch of the other
point cloud. We use perfect matching (as described in Section 3.1) to
match the sampled points in the corresponding patches. The isometric
costs for perfect matching are computed using Eq. (1) based on the
correspondence set 𝐵0 regardless of the current level. We denote the
resulting patch correspondence by 𝐵𝑘

𝑖 . We calculate the isometric error
of each correspondence pair in 𝐵𝑘

𝑖 based on 𝐵0 by:

𝐸iso(𝑏
𝑆,𝑘
𝑖 , 𝑏𝑇 ,𝑘𝑖 ) = 1

|𝐵0
|

∑

𝑗
|𝑑𝑆 (𝑏

𝑆,𝑘
𝑖 , 𝑏𝑆,0𝑗 ) − 𝑑𝑇 (𝑏

𝑇 ,𝑘
𝑖 , 𝑏𝑇 ,0𝑗 )| (4)

where (𝑏𝑆,0𝑗 , 𝑏𝑇 ,0𝑗 ) ∈ 𝐵0.
The correspondences with isometric errors larger than a threshold

are eliminated from the patch correspondence 𝐵𝑘
𝑖 . To define the thresh-

old, we calculate the maximum error between base correspondences 𝐵0

according to Eq. (2). We select the threshold as a factor (𝜏2 > 1) of
the maximum error. The union of all patch correspondences 𝐵𝑘

𝑖 over
𝑖 generates the base correspondence 𝐵𝑘 to be used at the next level.
The recursive sampling and matching process continues until no pair
of points is left to match between the two corresponding patches. We
set the resulting correspondences at the highest level as the final dense
correspondences 𝐵𝑘∗ .

We note that the base correspondences in 𝐵0 are fine-tuned gradu-
ally throughout the patchwise recursive matching process. At the end
of each level 𝑘, we consider every base correspondence pair (𝑏𝑆,0𝑖 , 𝑏𝑇 ,0𝑖 )
for a possible update. If the base point 𝑏𝑆,0𝑖 is already matched with

Algorithm 1 Dense Correspondence Estimation

Require: Base correspondence 𝐵 and point clouds 𝑃 𝑆 , 𝑃 𝑇

Ensure: Sequence of denser correspondences {𝐵𝑘}𝑘∗𝑘=0
Initialize with 𝐵0 = 𝐵, 𝑘 = 1, 𝑃 𝑆,0 = 𝑃 𝑆 , 𝑃 𝑇 ,0 = 𝑃 𝑇 ;
repeat

For each (𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) ∈ 𝐵𝑘−1

Create patches 𝑃 𝑆,𝑘
𝑖 and 𝑃 𝑇 ,𝑘

𝑖 using Eq. (3);
Find subsampled patch 𝑃 𝑆,𝑘

𝑖 ⊆ 𝑃 𝑆,𝑘
𝑖 if |𝑃 𝑆,𝑘

𝑖 | > 𝑁𝑆 ;
Find subsampled patch 𝑃 𝑇 ,𝑘

𝑖 ⊆ 𝑃 𝑇 ,𝑘
𝑖 if |𝑃 𝑇 ,𝑘

𝑖 | > 𝑁𝑆 ;

Find 𝐵𝑘
𝑖 : 𝑃 𝑆,𝑘

𝑖 → 𝑃 𝑇 ,𝑘
𝑖 relying on 𝐵0 via

diffusion-based perfect matching (Section 3.1);
Eliminate outliers from 𝐵𝑘

𝑖 ;
Set 𝐵𝑘 =

⋃

𝑖 𝐵
𝑘
𝑖 ;

Fine-tune base correspondence set 𝐵0 using 𝐵𝑘;
Increment level 𝑘;

until no unvisited point left to match

𝑏𝑇 ,0𝑖 at that level (or vice versa), then we continue without updating
the base pair. If 𝑏𝑆,0𝑖 is matched with a different point 𝑥𝑇 , and likewise
𝑏𝑇 ,0𝑖 is matched with 𝑥𝑆 , then we have three candidate base pairs:
(𝑏𝑆,0𝑖 , 𝑏𝑇 ,0𝑖 ) or (𝑏𝑆,0𝑖 , 𝑥𝑇 ) or (𝑥𝑆 , 𝑏𝑇 ,0𝑖 ). Among those, we pick whichever
yields the minimum isometric error computed via Eq. (4) over the dense
correspondence 𝐵𝑘 of level 𝑘 (hence 𝐵0 is simply replaced by 𝐵𝑘 in
Eq. (4) for computation of isometric error in this case).

The above coarse-to-fine matching strategy has two advantages
regarding computational cost and robustness. First, patchwise matching
reduces the search space considerably, providing efficiency as well as
robustness, since a point in a patch is very likely to match a point in the
corresponding patch on the other point cloud, assuming that initial base
matchings are mostly reliable. Second, it is indeed computationally
very demanding to match all the points at once due to the large
complexity of the perfect matching algorithm, and constraining the
number of points sampled within each patch to a reasonably small
number (such as 𝑁𝑆 = 50) makes perfect matching affordable.

We provide the pseudocode of our dense correspondence estimation
method in Algorithm 1.

3.3. Computational complexity

The complexity of our base correspondence estimation algorithm
is dominated by the min-weight perfect matching algorithm with
𝑂(𝑁2

0 log𝑁0) cost (Kolmogorov, 2009), where 𝑁0 = max(|𝑆|, |𝑇 |),
𝑆 and 𝑇 are source and target keypoint sets. In the dense corre-
spondence estimation part, we match 𝑂(𝑁𝑃

𝑁𝑆
) patches with 𝑂(𝑁𝑆 )

points in each, where 𝑁𝑆 is the number of points sampled from each
patch, 𝑁𝑃 = max(|𝑃 𝑆

|, |𝑃 𝑇
|), 𝑃 𝑆 and 𝑃 𝑇 are source and target point

cloud sets. Again, the cost is dominated by the min-weight perfect
matching algorithm, which is repeated for each patch and incurs a
cost of 𝑂(𝑁2

𝑆 log𝑁𝑆 ) per patch. Therefore, the total complexity of
the dense correspondence estimation part is 𝑂(𝑁2

𝑆 log𝑁𝑆 )𝑂(𝑁𝑃
𝑁𝑆

) =
𝑂(𝑁𝑃𝑁𝑆 log𝑁𝑆 ). In practice, we have 𝑂(𝑁0) ∼ 𝑂(𝑁𝑆 ) ∼ 𝑂(

√

𝑁𝑃 ).
Thus, the overall complexity of our solution can be written as
𝑂(𝑁

3
2
𝑃 log𝑁𝑃 ), which is better than 𝑂(𝑄2𝑁𝑃 ) complexity of the PR-GLS

algorithm (Ma et al., 2016) (one of our baselines), where 𝑄 ∼ 𝑁𝑆 in
practice. We note that the CPD algorithm (Myronenko and Song, 2010),
which can be seen as precedent to the PR-GLS method, has 𝑂(𝑁𝑃 ) time
complexity but less accuracy as we demonstrate experimentally.

4. Symmetry detection

In this section, we first describe our clustering-based method for
detecting symmetric sides of a point cloud and then explain how to

4
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Fig. 2. Illustration of our dense correspondence algorithm. The input base correspondences are extended to a sequence of denser correspondences via recursive subdivision,
sampling and matching.

integrate this symmetry information into our point correspondence
algorithm.

4.1. Clustering into symmetric sides

A shape 𝑃 is said to be intrinsically symmetric with respect to a
transformation  ∶ 𝑃 → 𝑃 , if an intrinsic metric 𝑑 is preserved
by the transformation  , i.e., 𝑑𝑃 (𝑝, 𝑞) = 𝑑𝑃 ( (𝑝), (𝑞)) for all 𝑝, 𝑞 ∈
𝑃 (Mitra et al., 2013). Since we deal with noisy and partial point clouds,
we use the diffusion distance as our intrinsic metric for symmetry
computations.

The first step in symmetry detection is to find this transformation  ,
which provides us with the set of all symmetric point pairs in the point
cloud. However since symmetries are never perfect on real shapes, we
rather seek for an approximation of this transformation. Hence one can
define it as the transformation that maximally preserves the diffusion
distances between points, to minimize a global symmetry distortion
function as given below:

 = argmin


∑

𝑝,𝑞∈𝑃
max{|𝑑𝑃 (𝑝, 𝑞) − 𝑑𝑃 ((𝑝),(𝑞))|,

|𝑑𝑃 (𝑝,(𝑞)) − 𝑑𝑃 ((𝑝), 𝑞)|}.
(5)

Note that the transformation  is partial in most cases, even if the
object is globally symmetric as a whole, due to the incompleteness of
real acquisition data, such as in the case of depth sensors. Thus, to
address this optimization problem, we resort to an iterative algorithm
with a sub-optimal solution that aims to maintain the global symmetry
distortion as low as possible while trying to find as many symmetric
point pairs as possible. We explain this algorithm in the sequel.

In practice, for efficiency, we sample a set of points 𝑃 = {�̄�1,… , �̄�
|𝑃 |}

from the point cloud 𝑃 and use this set to find the mapping  ∶ 𝑃 → 𝑃 .
For sampling, we use a voxel grid based downsampling and filtering
method, as implemented in the Point Cloud Library (Rusu and Cousins,
2011).

We first estimate an initial  based on the distribution of diffusion
distances from each sampled point �̄�𝑖 ∈ 𝑃 to all other points 𝑝 ∈ 𝑃 .
To this end, we compute the normalized diffusion distance histogram,
𝒉𝑖, as a descriptor for each sampled point �̄�𝑖 as in (Raviv et al., 2007,
2010a,b). We then match each sampled point �̄�𝑖 with the point �̄�𝑗 that
provides the minimum distance between histograms. The matching pro-
cess explained above provides us with an initial many-to-one relation,
i.e., a set of point pairs. We first make this relation one-to-one. For this

purpose, we calculate the symmetric distortion 𝐸𝑠𝑦𝑚(�̄�𝑖, 𝑞𝑖) of each point
pair (�̄�𝑖, 𝑞𝑖) as in (Jiang et al., 2013) (see also Eq. (5)):

𝐸𝑠𝑦𝑚(�̄�𝑖, 𝑞𝑖) =
1

| | − 1
∑

(�̄�𝑗 ,𝑞𝑗 )∈−(�̄�𝑖 ,𝑞𝑖)
max{|𝑑𝑃 (�̄�𝑖, �̄�𝑗 )

− 𝑑𝑃 (𝑞𝑖, 𝑞𝑗 )|, |𝑑𝑃 (�̄�𝑖, 𝑞𝑗 ) − 𝑑𝑃 (�̄�𝑗 , 𝑞𝑖)|}.
(6)

Note that we use  to denote the symmetry transformation as well
as the set of symmetric point pairs, hence the relation induced by this
transformation. In order to make the relation  one-to-one, we first
pick the pair (�̄�∗, 𝑞∗) with minimum symmetric distortion, and eliminate
each (�̄�∗, ⋅), (⋅, �̄�∗), (𝑞∗, ⋅) and (⋅, 𝑞∗) except (�̄�∗, 𝑞∗) from  . Then, we pick
from the remaining the pair with the next minimum distortion, and
likewise eliminate all other pairs including any of those points. We
repeatedly perform this process until  becomes one-to-one.

The resulting one-to-one mapping may still include pairs with large
distortion. Therefore, we prune the set using the same iterative proce-
dure used for base correspondence estimation (see Section 3.1). At each
iteration, we first re-calculate 𝐸𝑠𝑦𝑚 values of the pairs in the set (since it
depends on  that is modified through iterations). Then, we eliminate
the worst point pair from the set according to symmetric distortion.
We continue re-calculating symmetric distortion and eliminating the
worst pair until the minimum and the maximum distortions are close to
each other within a given ratio 𝜏𝑠𝑦𝑚. The whole process of minimization
of symmetric distortion outputs a mapping  that is one-to-one, but
mostly partial, due to pruning.

We use the obtained symmetry set  to cluster the point cloud 𝑃
into its symmetric sides, 𝑃− and 𝑃+. Each symmetric point pair (�̄�𝑖, 𝑞𝑖)
votes for every point 𝑝𝑗 ∈ 𝑃 , in order to determine on which side of the
shape 𝑝𝑗 is. After the voting process, the points with negative-valued
accumulation of votes are assigned to side 𝑃− whereas the others to
side 𝑃+. The votes of the pairs take value depending on what we call
a distance weight vector 𝒘(�̄�𝑖) = (𝑤1(�̄�𝑖), 𝑤2(�̄�𝑖),… , 𝑤

|𝑃 |(�̄�𝑖)), which is
calculated for each sampled point �̄�𝑖 by 𝑤𝑗 (�̄�𝑖) = 𝑒−𝑑𝑃 (�̄�𝑖 ,𝑝𝑗 ). Hence a
distance weight vector 𝒘(�̄�𝑖) assigns higher weights to the points closer
to �̄�𝑖 and lower weights to the points further from �̄�𝑖 in the point cloud
𝑃 .

We start the voting process with the pair (�̄�∗, 𝑞∗) having the least
symmetric distortion 𝐸𝑠𝑦𝑚. We define a vote vector 𝒗 = (𝑣1, 𝑣2,… , 𝑣

|𝑃 |)
and initialize it by 𝒗 = 𝒘(�̄�∗) − 𝒘(𝑞∗), where each 𝑣𝑘 represents the
amount of votes for 𝑝𝑘. Thus initially, the points close to �̄�∗ take higher
absolute votes with positive sign, whereas the points close to 𝑞∗ take

5
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Fig. 3. A symmetry detection example from the Human dataset: signs of the symmetry
weights (left), absolute values of the symmetry weights (right).

higher absolute votes with negative sign. The distances between point
pairs are calculated by:

𝑑𝑃 ((�̄�𝑘, 𝑞𝑘), (�̄�𝑙 , 𝑞𝑙)) = min(
𝑑𝑃 (�̄�𝑘, �̄�𝑙) + 𝑑𝑃 (𝑞𝑘, 𝑞𝑙)

2
,

𝑑𝑃 (�̄�𝑘, 𝑞𝑙) + 𝑑𝑃 (𝑞𝑘, �̄�𝑙)
2

)
(7)

as adopted from (Xu et al., 2012). We then proceed with the point pair
which is closest to (�̄�∗, 𝑞∗), say (�̄�𝑖, 𝑞𝑖), and we decide on the sides of the
points of the pair, �̄�𝑖 and 𝑞𝑖, based on the current votes accumulated in
𝒗. This side assignment can be done more reliably for the closest pair
compared to the farther pairs. To assign the sides, we compare the two
values calculated by ∑

𝑝𝑘∈𝑃 𝑤𝑘(�̄�𝑖)𝑣𝑘 and ∑

𝑝𝑘∈𝑃 𝑤𝑘(𝑞𝑖)𝑣𝑘, respectively
for �̄�𝑖 and 𝑞𝑖. The point yielding the higher value, say �̄�𝑖, is assigned to
side 𝑃+ with 𝑠(�̄�𝑖) = 1, and the other to side 𝑃− with 𝑠(𝑞𝑖) = −1, where
𝑠 is an indicator function taking value either 1 or −1. Then, the pair
(�̄�𝑖, 𝑞𝑖) votes for all the points in 𝑃 by incrementing the vote vector by
𝒗 = 𝒗+𝑠(�̄�𝑖)(𝒘(�̄�𝑖)−𝒘(𝑞𝑖)). We repeat this process, proceeding each time
with the point pair that is the next closest to (�̄�∗, 𝑞∗), until no more point
pair is left for voting. Finally we normalize the values in the vote vector
𝒗 by the maximum absolute vote in the vector. We refer to the resulting
vote values as symmetry weights, the signs of which provide us with
two symmetric sides as given in Fig. 3 (left). We denote the symmetry
weight vector by �̃� and the symmetry weight for an individual point
𝑝𝑖 by �̃�(𝑝𝑖). Moreover, the absolute values of these weights indicate the
confidence values for the side assignments of the points in 𝑃 as shown
in Fig. 3 (right). A high confidence value means that the symmetry side
decision is strong for that point.

We note that the complexity of our clustering-based symmetry
detection technique is 𝑂(|𝑃 |

3
2 ), which is executed only during prepro-

cessing.

4.2. Symmetry-aware correspondence

We incorporate the symmetry weights �̃� into the cost calculation
(Eq. (1)) of our base correspondence estimation algorithm so as to
alleviate the symmetric flip problem.

Given two shapes (source and target) to be matched, the first step
is to match the sides of the corresponding point clouds 𝑃 𝑆 and 𝑃 𝑇 . For
example, if the shapes are frontal human models, then the left-hand
side of the source (𝑃 𝑆

+ or 𝑃 𝑆
− ) is to be matched with the left-hand side of

the target. For this purpose, we first register the two point clouds using
the well-known rigid ICP method (Rusinkiewicz and Levoy, 2001) in
order to make the corresponding sides as close to each other as possible.
Then, we check whether the signs of the sides of the registered point
clouds are matching. Let the symmetry weights of source 𝑃 𝑆 and target
𝑃 𝑇 be �̃�𝑆 and �̃�𝑇 , respectively. We define a side matching score 𝜅𝑆→𝑇
that decides on the corresponding sides of the point clouds by:

𝜅𝑆→𝑇 =
∑

𝑝𝑖∈𝑃𝑆

|�̃�𝑆 (𝑝𝑖) + �̃�𝑇 (𝑞𝑖)|

−
∑

𝑝𝑖∈𝑃𝑆

| − �̃�𝑆 (𝑝𝑖) + �̃�𝑇 (𝑞𝑖)|
(8)

where 𝑞𝑖 = argmin𝑞𝑗∈𝑃 𝑇 ‖𝑝𝑖 − 𝑞𝑗‖ is obtained via registration. Then, we
update the sign of the weights of 𝑃 𝑆 by �̃�𝑆 = sign(𝜅𝑆→𝑇 )�̃�𝑆 . In practice,
we register the point clouds both ways. We also calculate 𝜅𝑇→𝑆 , and
update the signs of the weights based on the larger of the side matching
scores 𝜅𝑆→𝑇 and 𝜅𝑇→𝑆 .

Once the sides are matched, we next modify the cost function in
Eq. (1) based on the symmetry weights of the point clouds so as to pe-
nalize matching of the points that are located on the non-corresponding
sides of the shapes. So whenever a source point 𝑠𝑖 ∈ 𝑃 𝑆 and a target
point 𝑡𝑗 ∈ 𝑃 𝑇 are found to be located on the non-corresponding sides,
the following modified cost function 𝑐′𝑖𝑗 becomes in use:

𝑐′𝑖𝑗 = 𝑐𝑖𝑗 (1 +
𝛼
2
(|�̃�𝑆 (𝑠𝑖)| + |�̃�𝑇 (𝑡𝑗 )|)) (9)

The penalization factor 𝛼 > 0 is set as 𝛼 = 1.5 in all our experiments.
Note that for 𝛼 = 0, the symmetry-aware cost 𝑐′𝑖𝑗 becomes identical to
𝑐𝑖𝑗 in Eq. (1).

Due to the partial and noisy nature of the depth data, the estimated
symmetry information of a given shape may deviate from the true sym-
metry on some body parts, especially on the parts that have topological
misconnections or missing parts. We observe that the points at those
parts with ambiguities usually have low confidence values. Therefore,
we penalize matching of points only if they both have relatively high
confidence values, i.e., the parameter 𝛼 in Eq. (9) is reset to zero
whenever min(|�̃�𝑆 (𝑠𝑖)|, |�̃�𝑇 (𝑡𝑗 )|) ≤ 𝛽, where 𝛽 is set experimentally to
0.01.

5. Experimental results

5.1. Evaluation setup

We evaluate the performance of our algorithm on three partial
human body depth datasets: The Berkeley motion human action dataset
(MHAD) (Ofli et al., 2013; Teleimmersion Lab), the dataset that we
collected (Human) and the dataset of Guo et al. (2015), all con-
taining noisy and incomplete depth data of freely moving subjects,
captured using Kinect v1. We convert all depth frames to 3D point cloud
representations and discard color.

We pick 12 depth frames from the MHAD dataset and generate their
66 pair combinations. We select frames which exhibit large non-rigid
deformations with respect to each other, and each from a different
action set, such as jumping and throwing. Each frame in this dataset
has approximately 24K points and 43 ground-truth marker positions.

The other dataset (Human) that we have collected contains RGB-D
frames of a human subject exhibiting larger non-rigid motion compared
to MHAD. The Human dataset includes 6 frames with 33 manually
selected ground-truth keypoints out of approximately 24K points on
each, and 15 model pairs.

We also use the dataset of Guo et al. (2015) to compare our dense
correspondence results with the results of Guo et al. (2015). This
dataset includes 9 frames with approximately 29K points on each. We
manually selected 14 ground-truth keypoints on each frame.

The baseline methods to which we compare our base correspon-
dence estimation algorithm are the SHOT descriptor matching (using
a publicly available implementation2), and two state of the art non-
rigid point registration methods with publicly available codes: the
CPD method of Myronenko and Song (2010) and the PR-GLS method
of Ma et al. (2016), both of which also provide point correspondences.
The descriptor matching algorithm is based on the Euclidean distance
between the SHOT descriptors (Tombari et al., 2010) in two directions:
from target to source and from source to target. The intersection of the
resulting correspondence sets is the final output and is referred to as
reciprocal correspondences (Pajdla and Van Gool, 1995). We also employ
the resulting correspondence set of each baseline as the initial base
correspondence set 𝐵0 in our matching experiments.

2 http://pointclouds.org/.
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We compare our dense correspondence results with the results of
three state of the art methods. Besides CPD and PR-GLS, we additionally
compare our method with the method of Guo et al. (2015), which
is a recent point-based correspondence technique relying on geodesic
distances. To experiment with this method, we use the code provided
by the authors.

We employ two evaluation metrics: (1) The deviation from isometry,
i.e., the isometric error, for a given correspondence pair is computed
via 𝐸iso measure given in Eq. (2). (2) The deviation from ground-truth,
i.e., the ground-truth error, is calculated based on each pair’s closest
ground-truth correspondence. The ground-truth error, denoted by 𝐸grd,
is computed for each correspondence pair (𝑏𝑆𝑖 , 𝑏

𝑇
𝑖 ) by

𝐸grd(𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) =min(|𝑑𝑆 (𝑏𝑆𝑖 , 𝑔

𝑆
𝑙 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑙 )|, (10)

|𝑑𝑆 (𝑏𝑆𝑖 , 𝑔
𝑆
𝑘 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑘 )|)

where 𝑔 denotes a ground-truth keypoint on the source or target,
𝑙 = argmin𝑚(𝑑𝑆 (𝑏𝑆𝑖 , 𝑔

𝑆
𝑚 )) and 𝑘 = argmin𝑚(𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑚 )). Each of these

measures is averaged over all the pairs of a given correspondence set
and then eventually over the whole dataset. We note that Eq. (10) is
used for the ground-truth error calculation of both sparse and dense
correspondence results.

To analyze how much of the errors is caused by the symmetric
flip issues, we define another ground-truth error measure �̃�grd for each
correspondence pair (𝑏𝑆𝑖 , 𝑏

𝑇
𝑖 ), which discards the symmetric flip errors:

�̃�grd(𝑏𝑆𝑖 , 𝑏
𝑇
𝑖 ) =min(|𝑑𝑆 (𝑏𝑆𝑖 , 𝑔

𝑆
𝑙 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑙 )|, (11)

|𝑑𝑆 (𝑏𝑆𝑖 , 𝑔
𝑆
𝑘 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑘 )|,

|𝑑𝑆 (𝑏𝑆𝑖 , 𝑔
𝑆
𝑙 ) − 𝑑𝑇 (𝑏𝑇𝑖 , �̃�

𝑇
𝑙 )|,

|𝑑𝑆 (𝑏𝑆𝑖 , �̃�
𝑆
𝑘 ) − 𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑘 )|)

where 𝑙 = argmin𝑚(𝑑𝑆 (𝑏𝑆𝑖 , 𝑔
𝑆
𝑚 )), 𝑘 = argmin𝑚(𝑑𝑇 (𝑏𝑇𝑖 , 𝑔

𝑇
𝑚 )), and �̃�𝑇𝑙 and �̃�𝑆𝑘

are the symmetrically flipped versions of 𝑔𝑆𝑙 and 𝑔𝑇𝑘 , respectively. To
compute this measure, we manually marked the symmetrically flipped
version of each ground-truth keypoint over all dataset models.

To make a fair comparison between our method and the baseline
methods, we equalize the number of matchings for each model pair
by selecting the best 𝑅 correspondences resulting from each method,
where 𝑅 is the size of the correspondence set with the least number of
pairs.

5.2. Implementation details

We normalize the coordinates of each point cloud in a given dataset
such that all the points lie within the unit sphere centered at the origin.
The error threshold coefficients for our base and dense correspondence
algorithms are set experimentally as 𝜏1 = 2.1 (see Section 3.1) and 𝜏2 =
1.2 (see Section 3.2). The number of samples generated in each patch
for dense correspondence estimation is fixed to 𝑁𝑆 = 50. While finding
the symmetric point correspondence of a point 𝑝 via histogram match-
ing in our global intrinsic symmetry method, we ignore the closest 10%
of the sampled points in the candidate set. We experimentally set the
symmetry error threshold coefficient as 𝜏𝑠𝑦𝑚 = 2.4 (see Section 4.1).

To calculate the diffusion distance 𝑑𝑋,𝑡(𝑥, 𝑦) between two given
points 𝑥 and 𝑦 at time scale 𝑡 on a point cloud 𝑋, we compute the
graph Laplacian directly on the point representation in a similar way
as described in (Belkin and Niyogi, 2008). An important issue here
is how to set time parameter 𝑡, that determines the scale. We define
our diffusion distance metric as the average of diffusion distances
over a set of time steps  : 𝑑𝑋 (𝑥, 𝑦) = 1

| |

∑

𝑡∈ 𝑑𝑋,𝑡(𝑥, 𝑦). Hence the
diffusion distance 𝑑𝑋 (𝑥, 𝑦), which is independent of 𝑡, can be interpreted
as the average of the lengths of all the paths existing between two
surface points. Note that 𝑑𝑋 (𝑥, 𝑦) then becomes an approximation of
the commute-time distance metric (Bronstein et al., 2010), and has
the advantage of bounding the time scale parameter from above (or
below). In the experiments, we use the smallest 𝑀 = 60 eigenvalues
and the corresponding eigenvectors of the Laplacian matrix. The time
step parameter 𝑡 is incremented from 1 to 600 to compute the average
diffusion distance.

Table 1
Quantitative evaluation of our sparse (base) correspondence estimation method with
and without symmetry detection. (GT: Ground-truth, GT-SF: GT Error with symmetric
flips ignored, SD: Symmetry Detection, Errors ×10−5).

Method GT error GT-SF Error

MHAD Human MHAD Human

Without SD 0.43 0.32 0.09 0.01
With SD 0.27 0.15 0.03 0.02

Fig. 4. Example base correspondence results without (left) and with (right) our
intrinsic symmetry detection method. Symmetric flips reduced with our clustering-based
symmetry detection method especially on the arms.

Fig. 5. Red lines: incorrect, blue lines: correct correspondences. Left: Initial random
correspondences. Right: Results of our method with 100% precision.

5.3. Base correspondence results

We start by evaluating the performance of our correspondence
estimation method using our symmetry-aware technique described in
Section 4 versus the case where the symmetry information is dis-
carded. Table 1 shows that with our clustering-based symmetry detec-
tion method, we manage to reduce the symmetric flips on both datasets.
Fig. 4 shows an example comparison with and without symmetry
detection, where we observe that our symmetry-aware strategy corrects
most of the symmetric flips, especially those occurring on the arms.
All the correspondence results presented in the rest of this section are
obtained with our symmetry detection method in use.

In Table 2, we provide the results of the three baseline methods
compared to our method. We initialize our algorithm alternately with
descriptor matching, CPD, PR-GLS and with random correspondences.
We observe that our algorithm considerably improves the ground-
truth and isometric error results of the baseline algorithms (using
their output as our initial base correspondences) on the Human and
MHAD datasets. The advantage of our method is pronounced especially
when working with the challenging Human dataset that contains larger
deformations, hence less local similarity and smaller surface overlap
due to severe occlusions.

To test our method under more realistic situations, we also ex-
perimented with automatically detected keypoints, employing the ISS

7
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Table 2
Quantitative evaluation of our sparse (base) correspondence estimation method in comparison to the baseline methods. (GT: Ground-truth, Errors ×10−5).

With ground truth keypoints With detected keypoints

Method GT error Isometric error GT error Isometric error

MHAD Human MHAD Human MHAD Human MHAD Human

Descriptor Matching (DM) 3.79 7.09 7.48 6.33 5.55 6.74 5.22 6.52
CPD 0.48 4.79 4.89 6.54 2.53 3.39 4.03 6.01
PR-GLS 0.97 3.46 5.29 3.63 3.02 4.27 3.50 5.60
Our method (with DM) 0.49 0.21 0.57 0.61 1.76 1.76 0.72 0.88
Our method (with CPD) 0.21 0.16 0.55 0.60 1.14 1.06 0.72 0.88
Our method (with PR-GLS) 0.28 0.37 0.57 0.62 1.23 1.22 0.73 0.88
Our method (with Random) 1.99 0.39 0.71 0.65 2.61 1.86 0.74 0.96

Fig. 6. Example dense correspondence results on the Human dataset representing challenges: large deformation and gap.

Table 3
Quantitative evaluation of our dense correspondence method in comparison to baseline
methods. (Human𝑑 : Human dataset downsampled to half resolution; Errors ×10−5).

Method Ground truth error

MHAD Human Human𝑑 Guo et al. (2015)

Our method 1.25 1.32 1.18 0.91
CPD 2.41 3.28 2.80 –
PR-GLS – – 3.79 –
Guo et al. (2015) – – – 2.50

(Intrinsic Shape Signature) method (Zhong, 2009), instead of directly
using the available ground-truth keypoints (see Table 2). The perfor-
mances of all methods deteriorate in this case as expected, mainly
due to possible inconsistencies of the detected keypoints on the source
and target models. Yet our algorithm still significantly boosts the
performances of all the baseline methods in terms of all error types
and datasets. More interestingly, even when randomly initialized, our
algorithm provides better results than the baseline methods in almost
all cases, and its performance is only slightly affected by the choice
of the initialization technique. Furthermore, we have cases where the
initial correspondences are completely incorrect, and we still obtain
up to 100% precision as in Fig. 5. For the rest of our experiments, to
compute the initial base correspondence input of our algorithm, we
use the CPD method which is both performant and computationally
efficient.

5.4. Dense correspondence results

We demonstrate the visual performance of our coarse-to-fine dense
correspondence algorithm on the bottom row of Fig. 2 on a sample pair
from the MHAD dataset. This sample pair exhibits a large deformation
yielding topological changes at the legs and arms. We display the results
at increasing levels of detail, and represent the matched patches with
the same color. The leftmost models show our reliable base correspon-
dences, and the rightmost models are our final dense correspondence
outputs. Note that the keypoints matched are detected automatically as
in all our dense correspondence experiments.

Fig. 7. Dense correspondence on a sample pair from the MHAD dataset. It represents
large deformations and topological changes.

In Table 3, we provide quantitative evaluation of our dense cor-
respondence algorithm in comparison to the baseline methods. Our
algorithm is consistently better than the other methods in all cases. We
note that the public code for PR-GLS fails to run on the MHAD and
Human datasets due to their high resolution. Therefore, we downsam-
pled the Human dataset (to generate Human𝑑) to be able to experiment
with the PR-GLS method. Also, for a fairer comparison with the method
of Guo et al. (2015), we used their dataset.

In Figs. 6 and 7, we visualize our dense correspondence results
on sample pairs from the Human and MHAD datasets, respectively, in
comparison to CPD and PR-GLS. We observe in Fig. 6 that our algorithm
is capable of finding visually correct correspondences even on the parts
exhibiting large deformation, such as arms, and parts with large gaps,
such as legs. While the other methods suffer from symmetric flips on
the legs and can even match the right leg to the right arm, our method
successfully matches the left leg despite the unconnected part. Our
nested iterative pruning strategy leaves the right leg unmatched since
a reliable matching cannot be established. Similarly, on a challenging
sample pair from the MHAD dataset in Fig. 7, our algorithm provides
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Fig. 8. Dense correspondence on a sample pair with side-views from the dataset of Guo
et al. (2015) including large deformation and occlusions.

visually correct matchings on the arms exhibiting large deformation as
well as on the legs undergoing significant topological change.

Fig. 8 displays our dense correspondence results on a sample pair
from the (Guo et al., 2015) dataset in comparison to the method used
in Guo et al. (2015). This sample pair is of particular interest since
the point clouds of this pair are the side-views of the body, where
the right arm and most of the right leg are severely occluded. Hence,
this pair shows the benefits of our method well. First, the method
of Guo et al. (2015) provides much sparser matching results compared
to ours. Second, we successfully match the left arm in spite of large
deformation.

6. Conclusion

We have proposed an isometric mesh-free diffusion-based method
to find reliable sparse/dense correspondences between point clouds
generated from partial depth data exhibiting noise, deformations, and
occlusions. Our experiments show that our method provides state of
the art performance on such challenging partial human body datasets,
particularly on those exhibiting large deformations. We stress that our
method focuses on finding as many reliable correspondences as possi-
ble, pruning whenever matching is not reliable. We have also designed
a new global intrinsic symmetry detection method that addresses the
symmetric flip problem inherent to isometric correspondence methods.
Although our point correspondence framework is generic and can in
theory be applied to any isometric shape, our symmetry detection tech-
nique is yet effective on human shapes which have global reflectional
symmetry.

As future work, we plan to generalize our symmetry-aware corre-
spondence method to non-human shapes with rigid and/or isometric
deformations, that would certainly be useful for applications involving
object detection and retrieval from depth images. In this respect, a
possible research direction is to extend our clustering-based global
symmetry detection method to also handle local intrinsic symmetries.

Acknowledgments

This work was supported by the Scientific and Technological Re-
search Council of Turkey (TUBITAK) Grants 114E628 and 215E201. We
thank Guo et al. (2015) for sharing their code and dataset with us.

References

Aldoma, A., Marton, Z.-C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B.,
Rusu, R.B., Gedikli, S., Vincze, M., 2012. Point cloud library. IEEE Robot. Autom.
Mag. 1070 (9932/12).

Belkin, M., Niyogi, P., 2008. Towards a theoretical foundation for Laplacian-based
manifold methods. J. Comput. System Sci. 74 (8), 1289–1308.

Berger, M., Silva, C.T., 2012. Nonrigid matching of undersampled shapes via medial
diffusion. Comput. Graph. Forum 31 (5), 1587–1596.

Billings, S.D., Boctor, E.M., Taylor, R.H., 2015. Iterative most-likely point registration
(imlp): a robust algorithm for computing optimal shape alignment. PLoS One 10
(3), e0117688.

Bronstein, A.M., Bronstein, M.M., Kimmel, R., 2006. Generalized multidimensional
scaling: A framework for isometry-invariant partial surface matching. Proc. Natl.
Acad. Sci. 103 (5), 1168–1172.

Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G., 2010. A
Gromov-Hausdorff framework with diffusion geometry for topologically-robust
non-rigid shape matching. Int. J. Comput. Vis. 89 (2–3), 266–286.

Brunton, A., Wand, M., Wuhrer, S., Seidel, H.-P., Weinkauf, T., 2014. A low-dimensional
representation for robust partial isometric correspondences computation. Graph.
Models 76 (2), 70–85.

Chang, W., Zwicker, M., 2011. Global registration of dynamic range scans for articulated
model reconstruction. ACM Trans. Graph. 30 (3), 26.

Chen, Q., Koltun, V., 2015. Robust nonrigid registration by convex optimization.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
2039–2047.

Chui, H., Rangarajan, A., 2003. A new point matching algorithm for non-rigid
registration. Comput. Vis. Image Underst. 89 (2), 114–141.

Coifman, R.R., Lafon, S., 2006. Diffusion maps. Appl. Comput. Harmon. Anal. 21 (1),
5–30.

Dubrovina, A., Kimmel, R., 2011. Approximately isometric shape correspondence by
matching pointwise spectral features and global geodesic structures. Adv. Adapt.
Data Anal. 3 (01n02), 203–228.

Guo, H., Zhu, D., Mordohai, P., 2015. Correspondence estimation for non-rigid point
clouds with automatic part discovery. Vis. Comput. 1–14.

Horaud, R., Forbes, F., Yguel, M., Dewaele, G., Zhang, J., 2011. Rigid and articulated
point registration with expectation conditional maximization. IEEE Trans. Pattern
Anal. Mach. Intell. 33 (3), 587–602.

Huang, Q.-X., Adams, B., Wicke, M., Guibas, L.J., 2008. Non-rigid registration under
isometric deformations. Comput. Graph. Forum 27 (5), 1449–1457.

Jian, B., Vemuri, B.C., 2011. Robust point set registration using gaussian mixture
models. IEEE Trans. Pattern Anal. Mach. Intell. 33 (8), 1633–1645.

Jiang, W., Xu, K., Cheng, Z.-Q., Zhang, H., 2013. Skeleton-based intrinsic symmetry
detection on point clouds. Graph. Models 75 (4), 177–188.

Johnson, A.E., 1997. Spin-Images: A Representation for 3-D Surface Matching (Ph.D.
thesis). CMU-RI-TR-97-47.

Kim, V.G., Lipman, Y., Chen, X., Funkhouser, T., 2010. Möbius transformations for
global intrinsic symmetry analysis. Comput. Graph. Forum 29 (5), 1689–1700.

Kolmogorov, V., 2009. Blossom V: A new implementation of a minimum cost perfect
matching algorithm. Math. Program. Comput. 1 (1), 43–67.

Kovnatsky, A., Bronstein, M.M., Bresson, X., Vandergheynst, P., 2015. Functional
correspondence by matrix completion. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 905–914.

Küpçü, E., Yemez, Y., 2017. Reliable isometric point correspondence from depth. In:
Computer Vision Workshop (ICCVW), 2017 IEEE International Conference on. IEEE,
pp. 1266–1273.

Lafon, S.S., 2004. Diffusion Maps and Geometric Harmonics (Ph.D. thesis). Yale
University.

Li, H., Sumner, R.W., Pauly, M., 2008. Global correspondence optimization for non-rigid
registration of depth scans. Comput. Graph. Forum 27 (5), 1421–1430.

Liao, M., Zhang, Q., Wang, H., Yang, R., Gong, M., 2009. Modeling deformable objects
from a single depth camera. In: ICCV. pp. 167–174.

Lipman, Y., Chen, X., Daubechies, I., Funkhouser, T., 2010. Symmetry factored
embedding and distance. In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10, ACM,
New York, NY, USA, pp. 103:1–103:12.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis. 60 (2), 91–110.

Ma, J., Zhao, J., Yuille, A.L., 2016. Non-rigid point set registration by preserving global
and local structures. IEEE Trans. Image Process. 25 (1), 53–64.

Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E., 2008. Articulated shape
matching using Laplacian eigenfunctions and unsupervised point registration. In:
CVPR. pp. 1–8.

Mitra, N.J., Guibas, L.J., Pauly, M., 2006. Partial and approximate symmetry detection
for 3D geometry. ACM Trans. Graph. 25 (3), 560–568.

Mitra, N.J., Pauly, M., Wand, M., Ceylan, D., 2013. Symmetry in 3d geometry:
Extraction and applications. Comput. Graph. Forum 32 (6), 1–23.

Myronenko, A., Song, X., 2010. Point set registration: Coherent point drift. IEEE Trans.
Pattern Anal. Mach. Intell. 32 (12), 2262–2275.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R., 2013. Berkeley MHAD: A
comprehensive multimodal human action database. In: WACV. pp. 53–60.

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L., 2012. Functional
maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31
(4), 30.

9

http://refhub.elsevier.com/S1077-3142(19)30119-5/sb1
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb1
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb1
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb1
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb1
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb2
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb2
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb2
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb3
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb3
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb3
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb4
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb4
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb4
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb4
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb4
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb5
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb5
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb5
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb5
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb5
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb6
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb6
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb6
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb6
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb6
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb7
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb7
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb7
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb7
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb7
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb8
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb8
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb8
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb9
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb9
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb9
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb9
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb9
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb10
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb10
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb10
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb11
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb11
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb11
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb12
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb12
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb12
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb12
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb12
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb13
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb13
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb13
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb14
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb14
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb14
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb14
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb14
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb15
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb15
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb15
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb16
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb16
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb16
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb17
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb17
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb17
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb18
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb18
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb18
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb19
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb19
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb19
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb20
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb20
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb20
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb22
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb22
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb22
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb22
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb22
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb23
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb23
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb23
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb24
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb24
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb24
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb25
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb25
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb25
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb26
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb26
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb26
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb26
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb26
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb27
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb27
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb27
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb28
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb28
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb28
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb29
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb29
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb29
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb29
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb29
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb30
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb30
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb30
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb31
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb31
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb31
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb32
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb32
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb32
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb33
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb33
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb33
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb34
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb34
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb34
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb34
http://refhub.elsevier.com/S1077-3142(19)30119-5/sb34


E. Küpçü and Y. Yemez Computer Vision and Image Understanding 189 (2019) 102808

Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L., 2010. One point isometric matching
with the heat kernel. Comput. Graph. Forum 29 (5), 1555–1564.

Ovsjanikov, M., Sun, J., Guibas, L., 2008. Global intrinsic symmetries of shapes.
Comput. Graph. Forum 27 (5), 1341–1348.

Pajdla, T., Van Gool, L., 1995. Matching of 3-d curves using semi-differential invariants.
In: ICCV. p. 390.

Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., 2007. Symmetries of non-rigid
shapes. In: Workshop on Nonrigid Registration and Tracking (NRTL).

Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., 2010a. Full and partial
symmetries of non-rigid shapes. Int. J. Comput. Vis. 89 (1), 18–39.

Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sapiro, G., 2010. Diffusion
symmetries of non-rigid shapes. In: Proc. 3DPVT, vol. 2.

Rodola, E., Bronstein, A.M., Albarelli, A., Bergamasco, F., Torsello, A., 2012. A
game-theoretic approach to deformable shape matching. In: CVPR. pp. 182–189.

Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D., 2017. Partial
functional correspondence. Comput. Graph. Forum 36 (1), 222–236.

Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In: 3DIM.
pp. 145–152.

Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D
registration. In: ICRA. pp. 3212–3217.

Rusu, R.B., Cousins, S., 2011. 3D Is here: point cloud library (PCL). In: IEEE Interna-
tional Conference on Robotics and Automation. pp. 1–4, http://www.pointclouds.
org.

Sahillioğlu, Y., Yemez, Y., 2011. Coarse-to-fine combinatorial matching for dense
isometric shape correspondence. Comput. Graph. Forum 30 (5), 1461–1470.

Sahillioğlu, Y., Yemez, Y., 2012. Minimum-distortion isometric shape correspondence
using EM algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 34 (11), 2203–2215.

Sahillioğlu, Y., Yemez, Y., 2013. Coarse-to-fine isometric shape correspondence by
tracking symmetric flips. Comput. Graph. Forum 32 (1), 177–189.

Sahillioğlu, Y., Yemez, Y., 2014. Partial 3-d correspondence from shape extremities.
Comput. Graph. Forum 33 (6), 63–76.

Sharma, A., Horaud, R., Cech, J., Boyer, E., 2011. Topologically-robust 3D shape
matching based on diffusion geometry and seed growing. In: CVPR. pp. 2481–2488.

Sipiran, I., Gregor, R., Schreck, T., 2014. Approximate symmetry detection in partial
3D meshes. Comput. Graph. Forum 33 (7), 131–140.

Tam, G.K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R.,
Sun, X.-F., Rosin, P.L., 2013. Registration of 3D point clouds and meshes: a survey
from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19 (7), 1199–1217.

Teleimmersion Lab, Berkeley Multimodal Human Action Database (MHAD). University
of California, Berkeley. http://tele-immersion.citris-uc.org.

Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P., 2009. Isometric registration
of ambiguous and partial data. In: CVPR. pp. 1185–1192.

Tombari, F., Salti, S., Di Stefano, L., 2010. Unique signatures of histograms for local
surface description. In: ECCV. pp. 356–369.

Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D., 2011. A survey on shape
correspondence. Comput. Graph. Forum 30 (6), 1681–1707.

Wang, C., Bronstein, M.M., Bronstein, A.M., Paragios, N., 2011. Discrete minimum
distortion correspondence problems for non-rigid shape matching. In: SSVM. pp.
580–591.

Wang, H., Simari, P., Su, Z., Zhang, H., 2014. Spectral global intrinsic symmetry in-
variant functions. In: Proceedings of Graphics Interface 2014. Canadian Information
Processing Society, pp. 209–215.

Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H., 2016. Dense human body
correspondences using convolutional networks. In: CVPR. pp. 1544–1553.

Xu, K., Zhang, H., Jiang, W., Dyer, R., Cheng, Z., Liu, L., Chen, B., 2012. Multi-scale
partial intrinsic symmetry detection. ACM Trans. Graph. 31 (6), 181.

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., Xiong, Y., 2009. Partial
intrinsic reflectional symmetry of 3D shapes. ACM Trans. Graph. 28 (5), 138.

Yoshiyasu, Y., Yoshida, E., Guibas, L., 2016. Symmetry aware embedding for shape
correspondence. Comput. Graph. 60, 9–22.

Yoshiyasu, Y., Yoshida, E., Yokoi, K., Sagawa, R., 2014. Symmetry-aware nonrigid
matching of incomplete 3d surfaces. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4193–4200.

Zhang, Z., Yin, K., Foong, K.W., 2013. Symmetry robust descriptor for non-rigid surface
matching. Comput. Graph. Forum 32 (7), 355–362.

Zhong, Y., 2009. Intrinsic shape signatures: A shape descriptor for 3d object recognition.
In: ICCV Workshops, pp. 689–696.

Emel Küpçü received her Ph.D. from Koç University Com-
puter Science and Engineering. She obtained her Master’s
degree from Brown University. She also worked as a re-
search assistant at Marmara University for 5 years. Her
current research is on computer vision and graphics ap-
plications employing noisy and occluded 3D point clouds
captured with commodity depth sensors.

Yücel Yemez received his B.S. degree from Middle East
Technical University, Ankara, Turkey, in 1989, and his
M.S. and Ph.D. degrees from Boǧaziçi University, İstanbul,
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