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ABSTRACT
We present an end-to-end deep learning model for robot naviga-
tion from raw visual pixel input and natural text instructions. The
proposed model is an LSTM-based sequence-to-sequence neural
network architecturewith attention, which is trained on instruction-
perception data samples collected in a synthetic environment. We
conduct experiments on the SAIL dataset which we reconstruct
in 3D so as to generate the 2D images associated with the data.
Our experiments show that the performance of our model is on a
par with state-of-the-art, despite the fact that it learns navigational
language with end-to-end training from raw visual data.
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• Computing methodologies→ Artificial intelligence; Intel-
ligent agents;Natural language processing;Computer vision
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1 INTRODUCTION
Visual grounding plays a major role in language learning and un-
derstanding. This is especially important for robot navigation from
verbal instructions which often contain references to objects in the
environment in terms of their attributes and spatial properties. In
this work, we present a deep learning model for training a robot
to follow navigational instructions given in natural language by
taking visual data also into account. One distinctive aspect of the
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proposed model is that it learns navigational language with end-to-
end training from raw images, in contrast to the common practice
which assumes high-level visual information is readily available as
meta information in terms of object ids and attributes.

Figure 1: 2D and 3D views of one of the SAIL maps (Jelly).
The objects are indicated with letters in the 2D representa-
tion. Letters E, C, H , L, S , B stand for Easel , Chair , Hatrack ,
Lamp, So f a, Barstool , respectively. Each color represents a dif-
ferent floor and wall pattern. The agent is displayed as a
green circle in the 2D representation.

For our experiments, we use the SAIL dataset [20] by extend-
ing it with synthetic images. The dataset includes navigational
instructions in free-form natural language, which are collected in
a maze-like environment. The environment includes different ob-
jects, wall and floor patterns. The agent (robot) receives the visual
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Figure 2: The model learns to encode a navigational instruction in order to decode it into a sequence of actions by taking the
previous action and the current environment as input. The system also includes a textual attention mechanism. Using the
perceptual input and attending to the language, the decoder predicts the correct actions so as to follow the instructions.

information through its sensors and does not fully see the map. It
observes only part of the virtual environment using its camera as
shown in Figure 1. The agent is expected to follow the instructions
by taking a sequence of actions. The agent can execute four differ-
ent actions which are LEFT, RIGHT, MOVE and STOP. The LEFT
and RIGHT actions rotate the agent by 90 degrees with respect to
its current orientation. The MOVE action moves the agent one step
forward. STOP is a special action that stops the agent and ends the
sequence. No other action is taken after the STOP action.

The neural network architecture presented in this work is in-
spired by the previous work [21] [9] [6]. Our main contribution
is to encode raw visual data - pixel images - before feeding into
the decoder, by using a pre-trained convolutional neural network
that we customize for our dataset. Thus we do not rely on some
high-level visual meta-information assumed to be readily avail-
able. For this purpose, we reconstruct the 2D SAIL maps in 3D,
collect syntactical images and then train the model with them in an
end-to-end fashion. We also use an adequate attention mechanism
tailored for the visually grounded navigation task. The use of at-
tention is particularly important in this task as the agent may need
to attend (or consult) to different parts of the given instruction as
the environment keeps changing (e.g., new objects appear) during
navigation.

1.1 Dataset
The SAIL dataset consists of three different maps (Grid, L, Jelly).
We extend SAIL dataset by reconstructing the maps in 3D. For this
purpose, we use GAZEBO1 which is a robot simulation environment

1http://gazebosim.org/

that works with the Robot Operating System (ROS). It supports
programmatic control through ROS messaging.

Figure 3: 3D reconstruction of the Jelly map. The floor and
wall patterns are selected as mentioned in the original SAIL
dataset. The objects are placed to their specified nodes ac-
cordingly.

We have reconstructed the SAIL maps in GAZEBO along with
their wall and floor patterns. We have also placed the 3D models
of the 6 different objects (chair, lamp, easel, sofa, hatrack, barstool)
mentioned in the original dataset as shown in Figure 3.

By programmatically controlling the agent in the virtual envi-
ronment, we have captured images from each direction for each
node of all the SAIL maps. In this process, the agent is moved to a
node in the map and then the 4 images corresponding to FRONT,
LEFT, BACK and RIGHT are captured based on the current orienta-
tion through successive counter-clockwise rotations of 90 degrees.
While capturing images, the camera is positioned such that it makes
an angle of 30 degrees with the horizontal axis. For all instances in
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the original dataset, we then associate each captured image with
the corresponding node and the training sample.

2 MODEL
The task of visually grounded navigation can be formulated as a
Markov decision problem. We predict an action sequence, where
the next action depends on the previously taken action(s) and how
the perceived environment changes based on that action. Therefore,
we use a sequential encoder-decoder model [25]. First, the encoder
processes the textual instruction word by word. Then the decoding
process starts, where the current hidden state is computed based
on the encoder hidden states with attention as well as on the previ-
ous hidden state. We use a convolution neural network to extract
features from raw images. We then feed these visual features con-
catenated with the previous action and current orientation to the
decoder as input. At each time step, the decoder LSTM [13] predicts
an action and this continues until STOP action is output. If the
STOP action is never predicted, the sequence is cut at the maximum
sequence length. The architecture is shown in Figure 2. The details
of the architecture are discussed in the following subsections.

2.1 Encoder
Each verbal instruction in the dataset is a sentence, which is fed as
input to the encoder word by word. Bidirectional LSTM [11] is used
as the encoder and each word is represented as a one-hot vector.
We concatenate the hidden vectors of the back and forward moving
LSTMs and store them for later usage by the attention mechanism.

A sentence is represented as a sequence of one-hot vectors (x =
(x1,x2, ..,xN )), where N is the number of words in the sentence.
Bidirectional LSTM processes the input in backward and forward
directions with the following formulas:

fi = LSTM(Wf ,xi , fi−1)

bi = LSTM(Wb ,xi ,bi+1)

hei = fi ⊕ bN−i

(1)

whereWf and fi are the weight matrix and the hidden state vector
of the forward LSTM;Wb and bi are those for the backward LSTM.
The hidden state of the encoder is denoted by hei and computed
with the concatenation (⊕) of fi and bN−i . The hidden state vectors
of both LSTMs are initialized as zero.

2.2 Attention Mechanism
We use a global attention mechanism that adaptively attends to the
hidden states of the encoder and contributes to the hidden vector
of the decoder at each time step t [4] [19] [30] [27]. All hidden
states of the encoder are taken into account when calculating the
attention. First, the alignment ait between each hidden state vector
of the encoder hei and the hidden state vector of the decoder hdt at
time t is computed as follows:

ait = align(hdt ,h
e
i )

=
exp(score(hdt ,h

e
i ))∑

i exp(score(hdt ,h
e
i ))

(2)

Here score function is given by

score(hdt ,h
e
i ) = dot(hdt ,h

e
i )/

√
N (3)

where N is the number of the encoder hidden states, hence the
number of words in the given instruction, and dot function returns
the dot product of two vectors. The alignments {ait } are then used
to compute a context vector ct at each time step t . The context
vector is the weighted sum of the encoder hidden states:

ct =
∑
i
aith

e
i (4)

Finally, the attentional hidden state ĥdt of the decoder at time t is
computed by

ĥdt = tanh(Wc [ct ;hdt ]) (5)

where the context vector ct and the hidden state hdt are first con-
catenated and then multiplied by the weight matrixWc so as to
obtain ĥdt . The weight matrixWc is learned during the end-to-end
training process.

2.3 CNN
ResNet[12] is a convolutional neural network architecture that is
trained on ImageNet [24]. It is one of the best performing models
in recent years for the image recognition task. We use the pre-
trained ResNet-152 architecture to extract features from the images
collected in the virtual environment. For this purpose, the output
of the last pooling layer of ResNet-152 is employed as the feature
vector.

In order to fine tune the CNN architecture for this task, we use
a fully connected layer after the convolutional layers. Based on the
agent position and orientation, we extract the image feature vectors
corresponding to each direction (FRONT, LEFT, BACK and RIGHT)
and concatenate them before feeding to the fully connected layer.
We use a single hidden layer with ReLU activation [23]. The fully
connected layer is learned during the end-to-end training process
whereas the weights of the CNN architecture are frozen.

The output of the last fully connected layer is finally concate-
nated with the one hot representations of the previous action and
the agent’s orientation. The resulting vector becomes the input to
the decoder for the corresponding time step.

2.4 Decoder
At each time step t , the decoder hidden state is initialized with
ĥdt−1 that is computed using the attention mechanism described
previously. Given the input, the decoder then predicts an action se-
quence. The decoder input is formed by concatenating the previous
action αt−1 (one-hot vector), the current orientation ot (one-hot
vector) and the output of the fully connected layer vt . These steps
are more explicitly expressed in the sequel. First, the input images
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are processed:

ult = CNN(WCNN, I
l
t )

ut = u
F
t ⊕ uLt ⊕ uBt ⊕ uRt

vt = FC(ut )

(6)

where I lt is the input image at time step t and the index l stands for
F, L, B and R corresponding to FRONT, LEFT, BACK and RIGHT
images, respectively.WCNN is a set of matrices that stores the pre-
trained CNN weights. The vector ult is the output of the CNN
for each directional image; ut is the concatenation of these CNN
outputs; and vt is the output of the fully connected (FC) layer - the
weights of the FC layer are learned with end-to-end training.

The output of the fully connected layer, hence the visual features,
are then fed into the decoder along with the previous action and
the current orientation:

yt ,h
d
t = LSTM(Wd ,vt ⊕ ot ⊕ αt−1, ĥ

d
t−1) (7)

where yt is the standard output of LSTM and the matrixWd holds
the LSTM parameters learned with end-to-end training. The de-
coder then defines a probability over the generated action sequence,
α = (α1,α2, ..,αT ), that is executed by the agent:

P(α) =
T∏
t=1

P(αt | vt ,αt−1,ot , ĥ
d
t ) (8)

where T is the number of steps in the sequence, hence the number
of actions generated for the given instruction. Eq. (8) gives the
probability of the action sequence as the product of conditional
probabilities, where the conditional probability of each action is
obtained by applying the softmax operation to the decoder output:

P(αt | vt ,αt−1,ot , ĥ
d
t ) = softmax(yt ) (9)

2.5 Training
The LSTMs and FC layer of the model are trained2 in an end-to-end
fashion over visual data and text input. We convert the locations
and orientations in a given path followed by the agent into a se-
quence of actions. By using the gold action sequence during the
training, the weights of the model are optimized by minimizing the
negative log likelihood. This results in maximizing the probability
of the ground truth action sequence. The weights of the LSTM
models are learned with backpropagation through time [29]. We
use Adam optimization [17] with default parameters. Gradient clip-
ping method is used for the LSTMs with the norm threshold 5 [22].
The model is trained for 100 epochs and the best model is picked
based on the development dataset performance. We use a vector of
size 100 for the encoder hidden state and 200 for the decoder. The
number of hidden nodes in the fully connected layer is set to 500
and the output size to 100.

2.6 Inference
We test the trained model and generate sequence of actions by using
beam search [21, 25]. During the decoding process, at each time
step, the beam search strategy keeps a record of K best alternative
solutions so far (not only the best) and gives its decisions searching
2The model is implemented in Julia using Knet [31].

over these alternatives. On contrary to the greedy approach, the
beam search algorithm allows the model to correct the mistakes
it might have made previously during navigation. In our case, the
beam search ends when all the top K = 10 beams get the STOP
action as the last action or the beam length reaches the maximum
sequence length (which is 30 in our experiments).

3 EXPERIMENTS & RESULTS
We have trained two different models. The first model relies only
on the text input to predict the action sequence without using any
visual information. The other is the complete visually grounded
model which incorporates the visual data as well. The language-
only model is the baseline that we employ to compare with the
complete model. Language-only model takes only the previous
action as input to the decoder. For this model, the CNN and the
fully connected layer are omitted but the attention mechanism is
still in place. Each model is trained using two maps. The data for
the other map is split into halves for development and test purposes.
This is repeated three times for three different map pairs, and then
the overall success rate is reported by averaging the results. The
success rate is defined as in the previous studies: A test instance
is counted as successful if the agent is able to reach the correct
destination with the right orientation. All the performance reported
in this paper are on the Single Sentence partition of the SAIL dataset.
The performances of the two models are compared in Table 1. We
observe that visual grounding boosts the performance by about 5%.
We also note that almost one-third of the text instructions in the
SAIL dataset does not include any reference to the environment,
so the contribution of visual grounding is actually more than it
appears to be in the table.

Table 1: Performance results for language-only model vs. vi-
sually grounded model

Model Success rate (%)
Language Only 60.50
Visually Grounded 65.45

In Table 2, we compare our visually grounded model with the
previous works that have so far reported results on the same dataset.
The main difference of our model, when compared to all these meth-
ods, is that we use raw pixel images for the perceptual information
(hence no explicit scene analysis is needed) whereas the others
employ high-level visual meta-information available with the SAIL
dataset (bag of features). Only Can and Yuret [6] use their custom
grid representation which is however again based on the informa-
tion about object ids, attributes and spatial properties given in the
dataset. We believe that our approach is more general and appli-
cable to other datasets. As seen in Table 2, our model outperforms
most of the previous methods and its performance remains close
to state-of-the-art, yet it learns visual features from raw images
with end-to-end training. We believe that with richer and larger
datasets, our model would generalize better than it currently does
on the relatively small sized dataset such as SAIL.
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Table 2: Comparison of our model to state-of-the-art.

Method Success rate (%)
Chen & Mooney (2011) 54.40
Chen (2012) 57.28
Kim & Mooney (2012) 57.22
Kim & Mooney (2013) 62.81
Artzi et al. (2013) 65.28
Artzi et al. (2014) 64.36
Andreas and Klein (2015) 59.6
Kočiskỳ (2016) 63.25
Mei et al. (2016) (ens=10) 71.05
Fried et al. (2017) (ens=10) 71.64
Can & Yuret (2018) (ens=10) 72.82
Our Model 65.45

4 RELATEDWORK
One possible way to address the problem of navigational instruction
following is to use reinforcement learning. Vogel and Jurafsky [28]
for example use divergence from the gold path as reward signal.
Their model was able to ground meaning of some spatial words.
For the SAIL dataset however, since the gold action at each time
step is known and annotated for the whole sequence, a supervised
learning approach becomes possible as we use in this work.

Parser based methods have also been suggested for navigational
instruction following task. Chen and Mooney [8] translate instruc-
tions into formal executable plans with the KRISP semantic parser
[14]. They train the parser with aligned instruction and action-
sequence pairs. The system is later improved by Chen [7] by mod-
ifying the underlying semantic grammar. Kim and Mooney [16]
use probabilistic context free grammar (PCFG) induction [5] for
this task. They improve this technique later by using a re-ranking
module [15]. Artzi and Zettlemoyer [3] use combinatory categori-
cal grammar (CCG) parser to translate instructions into a lambda-
calculus formalism. They improve their system using a re-ranker
as well [2].

Another approach is to learn the mapping from instructions into
action sequences in an end-to-end fashion. Andreas and Klein [1]
follow this approach by scoring multiple execution plans based on
the alignment with the given instruction. They use a conditional
randomfieldmodel to learn this alignment.Mei et al. use an encoder-
decoder network. Their model also includes a textual attention
module [21]. Kočiskỳ et al. [18] take a semi-supervised approach
and use randomly generated action sequences for training. They
show that the model benefits from unsupervised training.

In 2017, Fried at al. [9] have proposed a Speaker-Listener model
which interprets the instruction and simulates possible alternatives
for each instruction. Their speaker model generates more robust
and less ambiguous instructions by reasoning about the listener
model. They report state-of-the-art results on SAIL dataset. Can
and Yuret [6] analyze the statistics of the SAIL dataset. They show
that some instructions occur too few times that makes it impossible
for the model to learn. They also show that their model learns more
efficiently by artificially boosting the training data. They report

state-of-the-art results on SAIL using CNN over the grid based
representation of the world.

Unlike the previous studies that use feature vector representa-
tions for the world states, our system processes raw visual input.
The same approach is used in a very recent work in the navigation
domain. Based on their previous work [9], Fried et al. [10] present
a novel speaker-follower model. With this method, they use a pre-
trained speaker model that can generate novel instructions based
on the route. The human annotated dataset is augmented by using
this speaker model. At test time, the follower model suggests routes
to follow and these are ranked by the speaker. This allows the fol-
lower to choose the best trajectory to follow and generalize better
for the unseen instructions. This work does not report results on
SAIL dataset and therefore not included in the Table 2.

5 CONCLUSION
We have reconstructed SAIL maps in 3D for data generation and
collection. This has allowed us to collect visual data based on the
SAIL maps. By using these collected images and the original SAIL
dataset, we have proposed a deep learning model that learns to
follow navigational instructions with visual grounding. The archi-
tecture can be trained and used with real images as well instead
of artificial images without significant architectural changes. Our
experiments have shown that our model outperforms most of the
previous methods while remaining close to state-of-the-art in terms
of success rate.

As future work, one possible way to move forward is to train
this model with images captured from real world to demonstrate
its potential for generalization. The system can be trained in an
end-to-end fashion with real world data by keeping its architecture
intact. The only limitation could be the use of discrete actions
which could be hard to achieve in a real world scenario. However, if
this condition is satisfied, the model can learn to follow the action
sequence. There is no limitation on the language side. It is also
possible to use transfer learning when initializing the model. The
system can be trained with the data from the virtual world first
and then can be fine-tuned with the real images. Moving from a
simulation environment to the real world has already been shown
to be a challenging but useful approach [26].
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