SECOND ORDER SYSTEMS

SECOND ORDER SYSTEM TRANSFER FUNCTION

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

POLES OF THE SYSTEM

\[p_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \]
POSSIBLE STEP RESPONSES OF SECOND ORDER SYSTEMS

<table>
<thead>
<tr>
<th>ζ</th>
<th>Poles</th>
<th>Step response</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$j\omega$
 $j\omega_n$
 $-j\omega_n$</td>
<td>Undamped</td>
</tr>
<tr>
<td>$0 < \zeta < 1$</td>
<td>$j\omega$
 $j\omega_n \sqrt{1 - \zeta^2}$
 $-\zeta\omega_n$
 $-j\omega_n \sqrt{1 - \zeta^2}$</td>
<td>Underdamped</td>
</tr>
<tr>
<td>$\zeta = 1$</td>
<td>$j\omega$
 $-\zeta\omega_n$</td>
<td>Critically damped</td>
</tr>
<tr>
<td>$\zeta > 1$</td>
<td>$j\omega$
 $-\zeta\omega_n + \omega_n \sqrt{\zeta^2 - 1}$
 $-\zeta\omega_n - \omega_n \sqrt{\zeta^2 - 1}$</td>
<td>Overdamped</td>
</tr>
</tbody>
</table>
POSSIBLE STEP RESPONSES OF SECOND ORDER SYSTEMS
UNDERDAMPED RESPONSE

$\gamma(t)$

Exponential decay generated by real part of complex pole pair

Sinusoidal oscillation generated by imaginary part of complex pole pair
\[%\text{OS} = e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}} \times 100 \]

\[T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \]

\[T_s = \frac{4}{\zeta \omega} \]
UNDERDAMPED CASE

\[s_{1,2} = -\zeta \omega_n \pm i \omega_n \sqrt{1 - \zeta^2} \]

\[\sigma_d \]

\[\omega_d \]

\[T_p = \frac{\pi}{\omega_d} \]

\[T_s = \frac{4}{\sigma_d} \]

\[\%OS = e^{-\frac{\sigma_d}{\omega_d} \pi} = e^{-\cot(\theta) \pi} \]
MORAL: If the third pole is far away from the origin, the third order system can be approximated with a second order system. If not...
Effect of a Zero

Normalized $c(t)$ vs. Time (seconds)

- zero at -3
- zero at -5
- zero at -10
- no zero
STEP RESPONSE OF SECOND ORDER SYSTEMS

System

- **(a)** \(R(s) = \frac{1}{s} \)

 \[\frac{b}{s^2 + as + b} \]

 General

- **(b)** \(R(s) = \frac{1}{s} \)

 \[\frac{9}{s^2 + 9s + 9} \]

 Overdamped

- **(c)** \(R(s) = \frac{1}{s} \)

 \[\frac{9}{s^2 + 2s + 9} \]

 Underdamped

- **(d)** \(R(s) = \frac{1}{s} \)

 \[\frac{9}{s^2 + 9} \]

 Undamped

- **(e)** \(R(s) = \frac{1}{s} \)

 \[\frac{9}{s^2 + 6s + 9} \]

 Critically damped

Pole-zero Plot

Response

- **(a)**

 \[G(s) \]

 \[s^2 + as + b \]

 \[x \text{-plane} \]

 \[-7.854 \text{ - 1.146} \]

 \[c(t) = 1 + 0.171e^{-7.854t} - 1.171e^{-1.146t} \]

- **(b)**

 \[G(s) \]

 \[s^2 + 9s + 9 \]

 \[s \text{-plane} \]

 \[j \omega \]

 \[-1.146 \]

 \[c(t) = 1 - e^{-t} \cos(\sqrt{8}t - 19.4) \]

- **(c)**

 \[G(s) \]

 \[s^2 + 2s + 9 \]

 \[s \text{-plane} \]

 \[j \sqrt{8} \]

 \[c(t) = 1 - 1.06e^{-t} \cos(\sqrt{8}t - 19.4) \]

- **(d)**

 \[G(s) \]

 \[s^2 + 9 \]

 \[s \text{-plane} \]

 \[j \sqrt{3} \]

 \[c(t) = 1 - \cos 3t \]

- **(e)**

 \[G(s) \]

 \[s^2 + 6s + 9 \]

 \[s \text{-plane} \]

 \[-3 \]

 \[c(t) = 1 - 3e^{-3t} - e^{-3t} \]
Overdamped

$20 \log_{10} |H(s)|$ for $\zeta=2$, $\omega_n=2$
Critically Damped

$20\log_{10}|H(s)|$ for $\zeta = 1$, $\omega_n = 2$
Underdamped

$20 \log_{10} |H(s)|$ for $\zeta = 0.3, \omega_n = 2$
Undamped
What if we include some zeros?

$20 \log_{10}|H(s)|$ for $\zeta = 0.3, \ \omega_n = 2$ with zeros at $-0.4 \pm 0.75j$