Math 207: Quiz # 4A
Fall 2004

• You have 35 minutes.
• You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask 2 points will be deducted from your grade.

1. Let \(f(z) = \frac{e^{(z+2)^2}}{z^2 + 4z + 5} \) and \(C := \{ z \in \mathbb{C} | |z| = 3 \} \).

1.a) Find the poles of \(f \) and determine their order. (8 points)

\[
\lim_{z \to 2} \frac{e^{(z+2)^2}}{z^2 + 4z + 5} = \lim_{z \to 2} \frac{e^{(z+2)^2}}{2z} = \frac{e^{-2}}{2} = \frac{1}{2e}
\]

\[
\lim_{z \to 2} \frac{e^{(z+2)^2}}{z^2 + 4z + 5} = \lim_{z \to 2} \frac{e^{(z+2)^2}}{z} = \frac{e^{-2}}{2} = \frac{1}{2e}
\]

\[
-1 \quad R(2^-) = \frac{1}{2e} \quad \text{Both poles are simple.}
\]

1.b) Calculate \(\oint_C f(z) \, dz \). (5 points)

\[
\oint_C f(z) \, dz = 2\pi i \left(R(2-) + R(2+) \right)
\]

\[
= 2\pi i \left(\frac{i}{2e} + \frac{1}{2i e} \right) = 0
\]
2. Use the method of contour integration to calculate:

\[I = \int_0^{2\pi} \frac{d\theta}{e^{i\theta} - 5}. \]

(15 points)

Let \(z = e^{i\theta} \), \(dz = ie^{i\theta} d\theta = i \, d\theta \). \(\theta = \frac{d\theta}{i} \)

\[I = \oint_C \frac{dz}{iz(\frac{1}{z} - 5)} = \oint_C \frac{dz}{z(1 - 5z)} \]

\(z = \frac{1}{5} \) is a pole and it is inside \(C \).

\[\text{Residue at } z = \frac{1}{5} \quad \text{is } \frac{1}{z(-5)} = -\frac{1}{5z} \quad \text{is finite and nonzero} \]

\[z = \frac{1}{5} \text{ pole is simple} \quad R\left(\frac{1}{5}\right) = -\frac{1}{5} ; \]

\[I = 2\pi i \, R\left(\frac{1}{5}\right) = -\frac{2\pi}{5}. \]