A motorcyclist is riding at a constant speed up a hill which has an inclination angle of \(\phi \). The power (in watts) generated by the engine of the motorcycle is \(P_E \), where \(m \) is the mass of the motorcycle (plus the rider) and \(g \) is the gravitational acceleration. Find the power lost to frictional forces in terms of \(m, g, \phi, v, \) and \(t \).

\[
\begin{align*}
\Delta W & = \frac{K_i - K_f}{t} - \frac{P_E}{t} \\
P_f & = P_{\text{in}} - \frac{W}{t} \\
& = mgv_0 - mgv\sin\phi \\
& = mg\beta' [1 - \sin\phi] \\
\Delta E & = \int mgv_i dt = mgv_i t \\
U & = \int mg\sin\phi \cdot dt = mg\sin\phi \cdot t \\
\Delta W_f & = mgv - mgv_0 - mg\sin\phi \cdot t \\
P_f & = mgv - mgv_0 - mg\sin\phi \cdot t \\
& = mg\beta' [1 - \sin\phi]
\end{align*}
\]
A small block with a mass \(m \) is attached to a cord passing through a hole in a frictionless, horizontal surface. The block is originally revolving at a distance \(r_1 \) from the hole with a speed \(v_1 \). The cord is then slowly pulled from below, shortening the radius to \(r_2 \). Throughout the process, \(r \) and \(v \) change, but their product satisfies \(r v = r_1 v_1 \) at all times. Find the work done by the person pulling the cord.

\[
W_{\text{done}} = K_1 - K_2
\]

\[
= \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2
\]

\[\text{See } v_2 = \frac{r_1 v_1}{r_2}.\]

\[K_1 \text{ kinetic energy at } r_1.\]

\[K_2 \text{ kinetic energy at } r_2.\]

\[
v_2 = \frac{r_1}{r_2} v_1,
\]

\[
= \frac{1}{2} m v_1^2 - \frac{1}{2} m \left(\frac{r_1 v_1}{r_2} \right)^2
\]

\[\text{with } r_1 v_1 = r_2 v_2 \text{ given.}\]

\[
= \frac{1}{2} m v_1^2 \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right]
\]

\[
W_{\text{done}} = \frac{1}{2} m v_1^2 \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right]
\]
A textbook with mass m is forced against a horizontal and ideal spring with force constant k, compressing the spring a distance x. When released from this position, the book slides on a horizontal tabletop with a coefficient of kinetic friction μ_k and comes to rest after moving by a distance $\frac{x}{2}$ (that is, when the spring is still compressed by $\frac{x}{2}$). Find x in terms of m, k, μ_k, and the gravitational acceleration g.

\[W = K + U + W_f \]

\[\frac{1}{2} k x^2 = m x g + \int_0^{x/2} \mu_k m g x \, dx \]

\[\frac{1}{2} k x^2 = \frac{1}{2} k \left(\frac{x}{4} \right)^2 + \mu_k m g \left(\frac{x}{2} \right) \]

\[\frac{1}{2} k x^2 \left[1 - \frac{1}{4} \right] = \mu_k m g \frac{x}{2} \]

\[x = \frac{4 \mu_k m g}{3 k} \]
An object slides on a very large, horizontal ice ring with a variable coefficient of kinetic friction \(\mu_k(x) = e^{-x/b} \), where \(x \) is the distance from the entrance. If the object enters the ring with speed \(v \) and moves on a straight line, what is the minimum value of \(v \) so that it never stops?

\[
\mu_k(x) = e^{-x/b}.
\]

\[
\kappa = \frac{1}{2} mv^2.
\]

\[
w_x = \int mg e^{-v/x} \, dx \bigg|_0^\infty = mg e^{-x/b} \bigg|_0^\infty = \left[mg e^{x/b} - mg e^{-x/b} \right].
\]

For object to never stop:

\[
\kappa > w_x.
\]

\[
\frac{1}{2} mv^2 > mg e^{x/b} - mg e^{-x/b}.
\]

\[
v^2 > \sqrt{2g} e^{x/b} + mg e^{-x/b}.
\]

At \(x = \infty \):

\[
v^2 > \sqrt{2g} e^{x/b} + mg e^{-x/b}.
\]

\[
v^2 = \sqrt{2mg}.
\]

Ans.
A car with mass \(m \) and moving at speed \(v \) enters an icy patch on the highway and starts skidding. The coefficient of kinetic friction between tires and the road decreases with the distance \(x \) from the beginning of the patch as \(\mu_k(x) = \frac{h}{h + x} \). The car stops at \(x_f \). Write down the work-energy theorem for the motion between \(x = 0 \) and \(x = x_f \), expressing the work done by friction as an integral. (Gravitational acceleration is \(g \).)

\[
W_I = k_I + U_I + W_{\text{fr}} \quad \text{[Initial]}
\]
\[
= \frac{1}{2} \, m \, v^2 + 0 + 0
\]

\[
W_f = k_f + U_f + W_{\text{fr}} \quad \text{[Final]}
\]
\[
= 0 + 0 + \int_0^{x_f} \mu_k \cdot mg \, dx = \int_0^{x_f} \frac{b}{b+x} \cdot mg \, dx = bmg \cdot \ln(x_f + b)
\]

\[
W_i = W_f
\]

\[
\frac{1}{2} \, m \, v^2 = \int_0^{x_f} \frac{b}{b+x} \cdot mg \, dx
\]
\[
= bmg \ln \left(\frac{x_f + b}{b} \right)
\]