The figure shows a capacitor network. Initially, the switches are off, the top and bottom capacitors are uncharged and the middle capacitor was charged to have an energy of 25 J. Then the switches are turned on. Calculate the final amount of energy stored in the middle capacitor.

\[E = \frac{1}{2} \frac{Q^2}{C} \]

\[2E = \frac{1}{2} \frac{Q^2}{2 \times 10^{-6}} \]

\[Q^2 = 2 \times 10^{-6} \]

\[Q = 1 \times 10^{-3} \]

After connection:

\[\frac{Q_1}{C_1} = \frac{Q_2}{C_2} = \frac{Q_3}{C_3} = V \]

\[Q_1 + Q_2 + Q_3 = 1 \times 10^{-2} \]

\[(C_1 + C_2 + C_3) V = 1 \times 10^{-2} \]

\[V = \frac{1 \times 10^{-2}}{6 \times 10^{-6}} = \frac{1}{6} \times 10^4 \]

Energy on second capacitor will be

\[\frac{1}{2} C_2 V^2 = \frac{1}{2} \times \frac{1}{3 \times 10^5} \times (\frac{1}{6})^2 \times 1 \times 1 \]

\[= \frac{1}{3} \times 10^3 \]
For the capacitor network given in the figure, the switches are initially off and the voltage between the terminals a and b is measured to be $V_{ab} = 12\,\text{V}$. The capacitor C_2 is uncharged. Then the switches are turned on and C_2 is connected to the circuit. Calculate the final voltage V_{ab} and the charge of C_2.

\[C_1 = 5\,\mu\text{F} \]
\[C_2 = 5\,\mu\text{F} \]
\[C_3 = 10\,\mu\text{F} \]

\[C_1 \] and \[C_2 \] are in series, we can write

\[Q = C \cdot V \]

\[V = \frac{Q}{C} \]

\[12 = \frac{Q}{\frac{1}{5} \times 10^{-6}} \Rightarrow Q = 4 \times 10^{-5} \text{C} \]

\[C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_3}} = \frac{1}{\frac{1}{5} + \frac{1}{10}} \times 10^{-6} \]

After connecting C_2:

\[C = \frac{1}{3} \times 10^{\text{-}5} \]

\[C' = C + C_2 = 2 \times 10^{-6} + \frac{1}{3} \times 10^{-5} = 5 \times 10^{-6} \]

\[Q = C' \cdot V' = 5 \times 10^{-6} \cdot V = 4 \times 10^{-5} \text{C}, \quad V = \frac{1}{5} \times 10^{-5} \text{V} \]

\[Q = 4 \times 10^{-5} \text{C} \]

\[V = 8\,\text{V} \]
A parallel plate capacitor consists of two flat metal plates each with area \(A \) separated by a distance \(d_1 \). The initial potential difference between the plates is measured to be \(V_{ab} = V \). Then, a dielectric slab having thickness \(d_2 \), (where \(d_2 < d_1 \)) and the dielectric constant \(K \) is inserted next to the left plate. The dielectric slab has the same shape and size as the plates. What is the value of \(V_{ab} \) in terms of \(V \) now?

\[
C = \frac{Q}{V} = \epsilon \frac{A}{d_1} \\
C' = \frac{1}{\frac{d_1-d_2}{\epsilon_0 A} + \frac{d_2}{\epsilon A}} \\
\epsilon = k \epsilon_0 \text{ permittivity of dielectric} \\
\frac{A \epsilon_0}{d_2 (\epsilon_0 - \epsilon) + \epsilon_0 d_1} \\
Q_{\text{initial}} = CV, \quad Q_{\text{final}} = C' V' \Rightarrow \frac{V'}{V} = \frac{C'}{C} \\
\frac{V'}{V} = \frac{\epsilon_0 \frac{A}{d_1}}{\epsilon_0 d_1 + (\epsilon_0 - \epsilon) d_2} \Rightarrow V' = (\frac{\epsilon_0 d_1 + (\epsilon_0 - \epsilon) d_2}{d_1 \epsilon}) V \\
\]
Several identical capacitors of capacitance $0.25 \ \mu F$ are given. The maximum voltage across each capacitor is not to exceed $600 \ \text{V}$. Using these capacitors, design an equivalent capacitor with capacitance $0.25 \ \mu F$ to be connected across a potential difference of $960 \ \text{V}$. Show your design clearly and calculate the charge of one capacitor in your design.

\[C = \frac{Q}{V} \]

\[Q = 0.25 \times 10^{-6} \times 960 \]

\[Q = 24 \times 10^{-5} \ \text{C} \]

Because of symmetry all the capacitors have the same charge.

\[Q_1 = \frac{24 \times 10^{-5}}{4} = 6 \times 10^{-5} \ \text{C} \]

\[Q_1 = C_1 \times V_1 = 6 \times 10^{-5} = 0.25 \times 10^{-6} \times V_1 \text{ or } V_1 = \frac{24 \times 10}{2.40} = 240 \ \text{V} \]
Two identical capacitors of capacitance C are connected as shown in the figure. Then, the potential across the bottom capacitor is measured to be equal to V. Suppose that the distance between the plates of the top capacitor is doubled. What is the final voltage of the bottom capacitor in terms of V?

The charge is conserved

$Q_1 = C_1 V$ \quad \Rightarrow \quad C = \varepsilon \frac{A}{d}$

$Q_2 = C_2 V$

$C = C_2 \Rightarrow Q_1 = Q_2$ \quad At the beginning \quad $Q = Q_1 + C_2 = 2CV$

$Q = 2\varepsilon \frac{A}{d} V$

find $C_2 = \varepsilon \frac{A}{2d} \Rightarrow \frac{C}{2}$ \quad Q doesn't change \Rightarrow

$Q = \frac{C V}{2} + CV' \Rightarrow CV' = CV + \frac{CV}{2} = 2CV$

$1. \frac{3}{2} V' = 2V$

$V' = \frac{2}{3} V$

\[\boxed{V' = \frac{2}{3} V} \]