Consider two single-turn co-planar, concentric coils of radii R and r, with $R \gg r$, as shown in Figure. What is the mutual inductance between the two loops?

\[\Phi_2 = B \cdot A = \frac{\mu_0 I_1}{2R} \pi r^2 \]

Thus magnetic flux inside the inner circle is:

The mutual inductance is then,

\[M = \frac{N_2 \Phi_2}{I_1} = 1 \cdot \frac{\frac{\mu_0 I_1}{2R} \pi r^2}{I_1} = \frac{\mu_0 I_1 \pi r^2}{2R} \]
Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes

Compute the self-inductance of a solenoid with N turns, length L, and radius R with a current I flowing through each turn.

Assuming field inside the solenoid uniform, we can calculate flux through its crosssection area as

$$\Phi = B \cdot A = \mu_0 \frac{N}{L} I \pi R^2$$

So the inductance is,

$$L = \frac{N \Phi}{I} = \frac{\mu_0 \pi N^2 R^2}{L}$$
Closed book. No calculators are to be used for this quiz.
Quiz duration: 10 minutes

Name:
Student ID:
Signature:

Calculate the self-inductance of a toroid which consists of \(N \) turns and has a rectangular cross section, with inner radius \(a \), outer radius \(b \) and height \(h \), as shown in Figure.

Field inside a toroid:

\[\oint \mathbf{B} \cdot d\mathbf{A} = \mu_0 I \text{ circ} \]

\[\mathbf{B} \cdot d\mathbf{A} = \mu_0 NI \]

\[B(r) = \frac{\mu_0 NI}{2\pi r} \]

Flux through the strip:

\[d\Phi = \mathbf{B} \cdot d\mathbf{A} = \frac{\mu_0 NI h}{2\pi r} \]

Total flux:

\[\Phi = \int d\Phi = \frac{\mu_0 NI h}{2\pi} \int_a^b \frac{b}{r} dr = \frac{\mu_0 NIh}{2\pi} \ln \left(\frac{b}{a} \right) \]

Inductance

\[L = \frac{N^2 \Phi}{I} = \frac{\mu_0 N^2 h}{2\pi} \ln \left(\frac{b}{a} \right) \]
A long solenoid with length l and a cross-sectional area A consists of \(N_1 \) turns of wire. An insulated coil of \(N_2 \) turns is wrapped around it, as shown in Figure. (i) Calculate the mutual inductance \(M \), assuming that all the flux from the solenoid passes through the outer coil. (ii) Relate the mutual inductance \(M \) to the self-inductances and of the solenoid and he coil.

\((i) \quad M = \frac{N_2 \phi_{B2}}{I_1} \)

\[\phi_{B2} = BA \quad \text{where} \quad B = \frac{\mu_0 N_1 I_1}{l} \]

\[= \frac{\mu_0 N_1 I_1 A}{l} \]

\[\Rightarrow M = \frac{\mu_0 N_1 N_2 I_1 A}{I_1 l} = \frac{\mu_0 N_1 N_2 A}{l} \]

\((ii) \quad \) Since \(M = \frac{N_2 \phi_{B2}}{I_1} = \frac{N_1 \phi_{B1}}{I_2} \quad \Rightarrow \quad I_2 = \frac{N_1 \phi_{B1}}{M} \)

\[\text{and} \quad I_1 = \frac{N_2 \phi_{B2}}{M} \]

\[\Rightarrow \quad I_1 I_2 = \frac{M^2}{I_1 I_2} \]

\[\Rightarrow \quad M = \sqrt{I_1 I_2} \]
A long solenoid with length l and a radius R consists of N turns of wire. A current I passes through the coil. Find the energy stored in the system.

$$U = \frac{1}{2} L I^2$$

$$L = \frac{N \Phi_B}{I}$$

$$\Phi_B = \vec{B} \cdot \vec{A} = BA = \left(\frac{\mu_0 NI}{l}\right) (\pi R^2)$$

$$\Rightarrow L = \frac{\mu_0 N^2 R^2 \pi}{I}$$

$$\Rightarrow U = \frac{1}{2} \frac{\mu_0 N^2 I^2 R^2}{l}$$