For the capacitor network given in the figure, the terminals a, and b are kept at a constant potential difference. What can be the value of C_3 if;
(a) C_1 and C_3 have the same potential?
(b) C_1 and C_3 have the same charge?
(c) C_1 and C_2 have the same potential?
(d) C_1 and C_2 have the same charge?
The capacitors in the figure are initially uncharged. The terminals \(a \) and \(b \) are connected to a battery to have a potential difference \(V_{ab} = 9 \text{ V} \). Calculate the potential difference between the terminals \(c \) and \(d \) (\(V_{cd} \)). (Hint: What is \(V_{ac} + V_{cd} + V_{da} = ? \).)
For the capacitor network given in the figure, the switch \(S \) is initially open, \(C_1 \) is charged with a potential of 12 V, and \(C_2 \) and \(C_3 \) are uncharged. Then \(S \) is closed (this is a parallel connection) Calculate the ratio of the electric potential energy that was stored in capacitor \(C_1 \) before and after the switch was closed.
Two parallel plate capacitors in the figure are connected in parallel. In this configuration, the capacitor C_1 has charge Q_0. Now, suppose that a dielectric slab with dielectric constant $K = 2$ is inserted between the plates of C_2 and it fills the space between the plates completely. How much charge has flowed through the point S and in which direction?
Two identical parallel plate capacitors $C_1 = C_2 = C$ are connected in parallel and to a battery of potential difference V as shown in the figure. Consider the following separate cases:

(I) The switch is opened so that the battery is disconnected and then the separation between the plates of C_1 is doubled.

(II) The battery remains connected and the separation between the plates of C_1 is doubled.

Determine the ratio of the charge stored in C_2 in these cases.
Two parallel plate capacitors in the figure are connected in parallel. In this configuration, the capacitor C_1 has charge Q_0. The separation between the plates of C_2 is d. Now, suppose that a metal slab of thickness $d/3$ is inserted between the plates of C_2 without touching to any of the plates. The metal slab has the same area and shape as the plates. Determine the ratio of the charge of C_2 before and after the metal slab was inserted.