ECON/MGEC 333
GAME THEORY AND STRATEGY
Midterm Examination I

Levent Koçkesen
November 26, 2011

Instructions

• Please write your name in the space provided at the top.
• Answer all questions.
• Write your answers in the space provided for each answer.
• Show enough of your work so that your reasoning can be followed.
• You may detach the last two pages and use as scrap paper.
• Time allowed: 90 minutes.

<table>
<thead>
<tr>
<th>Question</th>
<th>Max</th>
<th>You get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>30 pts</td>
<td></td>
</tr>
<tr>
<td>Question 2</td>
<td>35 pts</td>
<td></td>
</tr>
<tr>
<td>Question 3</td>
<td>35 pts</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100 pts</td>
<td></td>
</tr>
</tbody>
</table>

Good Luck!
1. **(30 pts)** Consider the following game:

<table>
<thead>
<tr>
<th></th>
<th>(S)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>4,4</td>
<td>0,2</td>
</tr>
<tr>
<td>(H)</td>
<td>2,0</td>
<td>2,2</td>
</tr>
<tr>
<td>(N)</td>
<td>3,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

 (a) **(15 pts)** Find the set of pure strategy Nash equilibria.

 (b) **(15 pts)** Find a mixed strategy Nash equilibrium in which player 1 plays all three actions with positive probabilities.
You may continue your answer to Question 1 on this page
You may continue your answer to Question 1 on this page
2. (35 pts) A buyer and a seller simultaneously submit a price, which can be any non-negative number. If the price chosen by the buyer is at least as large as the price chosen by the seller, i.e., \(p_b \geq p_s \), trade occurs and the buyer pays \(p_b \) whereas the seller receives \(p_s \). The rest, i.e., \(p_b - p_s \), goes to a charity. If trade occurs, payoff of the buyer is his value \(v \) minus the price he pays and the payoff of the seller is the price she receives minus her cost, \(c \). Assume that \(v > c \geq 0 \). If trade does not occur, both players receive zero payoff.

(a) (10 pts) Formulate this situation as a strategic form game.
(b) (10 pts) Show that any \((p_b, p_s)\) such that \(c \leq p_b = p_s \leq v \) is a Nash equilibrium.
(c) (15 pts) Find the set of all pure strategy Nash equilibria.
You may continue your answer to Question 2 on this page
You may continue your answer to Question 2 on this page
3. (35 pts) Now consider the game in question (2), but with incomplete information. Buyer’s value \(v \) and seller’s cost \(c \) have independent uniform distributions over the interval \([0, 1]\). However, only buyer knows his value and only seller knows her cost. Find a Bayesian equilibrium in which the buyer plays according to a linear strategy:

\[
p_b(v) = \alpha + \beta v
\]

and the seller plays according to

\[
p_s(c) = \gamma + \delta c.
\]

Note that \(\alpha, \beta, \gamma, \delta \) are coefficients that you should determine so that the resulting strategies constitute a Bayesian equilibrium.
You may continue your answer to Question 3 on this page
You may continue your answer to Question 3 on this page
You may use as scrap paper
You may use as scrap paper