Question 1 (15 Points):
Find the following limits:

(a) \(\lim_{h \to 0} \frac{\frac{1}{\pi h} - \frac{1}{2}}{h} \)

(b) \(\lim_{x \to 0} \frac{\tan(4x)}{\sin(5x)} \)

(c) Let \(f(x) = \frac{\tan(4x)}{\sin(5x)} \) for \(-\pi/2 < x < \pi/2, \ x \neq 0 \). How would you define \(f(0) \) so that \(f(x) \) is continuous?
Question 2 (15 Points):
(a) \(y = f(x) \) is a one-to-one function, and the point \((-1, 2)\) is on its graph. Let \(f^{-1}(x) \) be the inverse function of \(f(x) \), and \(f'(x) = \frac{d}{dx} f(x) \) be the derivative of \(f(x) \). The equation of the tangent to \(y = f(x) \) at \((-1, 2)\) is \(y = 2x + b \). Find the following. Justify your answers.

(i) \(b \)
(ii) \(f^{-1}(2) \)
(iii) \(f'(-1) \)
(iv) \(f^{-1}(f(-1)) \)
(v) \(\frac{d}{dx} f^{-1}(x) \bigg|_{x=2} \)

(b) If \(\sin(x) = -\frac{1}{2} \), then what are all possible values for \(\tan(x) \)?
Question 3 (15 Points):
Let \(f'(x) = \frac{d}{dx} f(x) \) be the derivative of \(f(x) \). Find

(a) \(f'(x) \) for \(f(x) = \sqrt[3]{\sin(x^2)} \)

(b) The slope of the tangent at \((1, -1)\) to the circle \(x^2 + y^2 = 2 \)

(c) The function \(f(x) \) is continuous in the interval \((-5, 3)\). Find all local extrema of \(f(x) \) in the interval \((-5, 3)\) if \(f'(1) \) does not exist and

<table>
<thead>
<tr>
<th>x</th>
<th>((-5, -2))</th>
<th>(-2)</th>
<th>((-2, -1))</th>
<th>(-1)</th>
<th>((-1, 0))</th>
<th>0</th>
<th>((0, 1))</th>
<th>((1, 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Question 4 (10 Points):

(a) Find the \(\frac{d}{dx} \int_{\sqrt{x}}^{3x} t^2 \, dt \) using the Fundamental Theorem of Calculus.

(b) Find \(\frac{d}{dx} \int_{\sqrt{x}}^{3x} t^2 \, dt \) by first finding \(\int_{\sqrt{x}}^{3x} t^2 \, dt \), and then taking the derivative of the result.

(c) Find \(\int_{1}^{e} (2(\ln(x) + 1)) \, dx \) given that the derivative of \(x^2 \ln(x) \) is \(2(\ln(x) + 1) \).
Question 5 (20 Points):
(a) Evaluate
\[\int_{0.5}^{1} \frac{x^2 + 13}{x^2 + 1} \, dx \]

(b) Find the area between the curve \(y = 2\sqrt{x^2 + 1} \), \(0 \leq x \leq \sqrt{3} \), and the x-axis
Question 6 (10 Points):

Determine whether the improper integral \(\int_{0}^{\infty} e^{-x} dx \) is convergent or divergent. If the improper integral is convergent, evaluate it.
Question 7 (10 Points):
Determine whether the following sequence is convergent or divergent. If the sequence is convergent, find its limit.

(a) \(a_n = \frac{(-1)^n}{n+1} \)

(b) \(a_n = \frac{\ln(n+1)}{\sqrt{n}} \)
Question 8 (10 Points):
For each of the following series, write the first 2 terms and determine whether the series is convergent or divergent. If the series converges, find its sum.

(a) \(\sum_{n=1}^{\infty} (-1)^n \)

(b) \(\sum_{n=0}^{\infty} \frac{2^{2n}}{3^{n+1}5^n} \)