Math 106: Calculus

Final - Fall 2010
Duration: 150 minutes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>15</td>
</tr>
<tr>
<td>#2</td>
<td>12</td>
</tr>
<tr>
<td>#3</td>
<td>12</td>
</tr>
<tr>
<td>#4</td>
<td>18</td>
</tr>
<tr>
<td>#5</td>
<td>12</td>
</tr>
<tr>
<td>#6</td>
<td>15</td>
</tr>
<tr>
<td>#7</td>
<td>8</td>
</tr>
<tr>
<td>#8</td>
<td>8</td>
</tr>
<tr>
<td>Σ</td>
<td>100</td>
</tr>
</tbody>
</table>

- Put your name, student ID and signature in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.
- Write your solutions clearly; no credit will be given for unreadable solutions.
- Mark your section below.

Section 1 (Azadeh Neman, MW 12:30-13:45)
Section 2 (Emre Mengi, MW 15:30-16:45)
Section 3 (Selda Küçükçifçi, MW 11:00-12:15)
Section 4 (Selda Küçükçifçi, MW 14:00-15:15)
Section 5 (Azadeh Neman, TuTh 12:30-13:45)
Section 6 (Azadeh Neman, TuTh 15:30-16:45)
Question 1. Let $f(x) = \frac{1}{\sqrt{x}}$.

(a) Use a linear approximation to estimate $\frac{1}{\sqrt{1.1}}$.

(b) Find the Taylor series for $f(x)$ centered at 1.

(c) Determine the interval and radius of convergence for the Taylor series that you determined in part (b).
Question 2. Recall the power series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \ldots$$

provided $|x| < 1$.

(a) Find the power series for $f(x) = \ln(1+x)$ about 0 and its radius of convergence.

(b) Using your solution to part (a) find a power series whose sum is $\ln(1.5)$.
Question 3.

(a) Find the x-coordinates of the critical points of the function

$$F(x) = \int_1^{x^2} \frac{\sin t}{t} \, dt$$

defined for $x > 1$.

(b) Evaluate the limit

$$\lim_{h \to 0} \frac{\int_{-h}^{0} \sin t \, dt}{h^2}.$$
Question 4.

(a) Evaluate the indefinite integral given below.
\[\int x \cos(7x) \, dx \]

(b) Is the integral given below convergent or divergent?
\[\int_{-\infty}^{\infty} f(x) \, dx, \text{ where } f(x) = \begin{cases} e^{2x} & \text{if } x < 0 \\ e^{-x} & \text{if } x \geq 0 \end{cases} \]
Evaluate the integral if it is convergent. State your reasoning and show the details of your work.
(c) Evaluate the definite integral given below.

\[\int_{2}^{3} \frac{x}{x^3 - 1} \, dx \]
Question 5. Consider the region \mathcal{R} bounded by the curves $y = e^{2x}$ and $y = e^{-x}$, and the vertical lines $x = -1$ and $x = 1$.

(a) Find the area of the region \mathcal{R}.

(b) Find the volume of the solid obtained by revolving \mathcal{R} about the x-axis.
Question 6. In each part indicate whether the series is convergent or divergent. Explain your answer. In particular state explicitly which test you are using.

(a) \[\sum_{n=1}^{\infty} \frac{n^2}{n^3 \cdot \sqrt{n + 1}} \]

(b) \[\sum_{k=2}^{\infty} \frac{5}{k \cdot (\ln k)^6} \]

(c) \[\sum_{n=0}^{\infty} \sin n \]
Question 7. A spherical balloon is inflated so that its volume increases at a constant rate of 1 cm³/min. Find the rate at which its radius increases when its radius is 20 cm.

Question 8. Indicate whether each of the following sentences about a sequence \(\{a_n\} \) or a series \(\sum_{n=1}^{\infty} a_n \) is true in general or not necessarily true by circling out the appropriate choice. You do not need to justify your answer.

(a) If the sequence \(\{|a_n|\} \) is convergent, then the sequence \(\{a_n\} \) is also convergent.
 \[\text{True in general} \quad \text{Not necessarily true} \]

(b) If the sequence \(\{|a_n|\} \) is convergent, then the sequence \(\{1/a_n\} \) is divergent.
 \[\text{True in general} \quad \text{Not necessarily true} \]

(c) If the series \(\sum_{n=1}^{\infty} a_n \) is convergent, then the series \(\sum_{n=1}^{\infty} 2a_n \) is also convergent.
 \[\text{True in general} \quad \text{Not necessarily true} \]

(d) If the series \(\sum_{n=1}^{\infty} a_n \) is convergent, then the series \(\sum_{n=1}^{\infty} a_n^2 \) is also convergent.
 \[\text{True in general} \quad \text{Not necessarily true} \]