Problem 1 (15 points)

Find the area between the curves $y = x^2$ and $x = y^2$.

\[y = x^2 = y^4 \Rightarrow y^4 - y^2 = 0 \Rightarrow y^2(y^2 - 1) = 0 \Rightarrow y = 0 \text{ or } y = 1. \]

Therefore the points of intersection of the given curves are $(0,0)$ and $(1,1)$. If we denote the area between the curves as A, then $A = \int_0^1 \left(\sqrt{y} - y^2 \right) \, dy$.

\[\int_0^1 x^2 \, dx = \frac{2}{3} \left[\frac{x^3}{3} \right]_0^1 = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}. \]

\[+7 \text{ points} \]

\[+3 \text{ points} \]

\[+5 \text{ points} \]
Problem 2 (15 points)

Calculate the following integrals. Show all your work.

(a) (7 points) $\int_1^e \frac{\sin(\ln x)}{x} \, dx$.

\[\int_1^e \frac{\sin(\ln x)}{x} \, dx = \int_1^e \frac{\sin(u)}{e^u} \, du \quad \text{where} \quad u = \ln x \]

\[= \sin(u) \bigg|_1^e - \int_1^e \cos(u) \, du \bigg|_1^e \]

\[= \sin(e) - \cos(e) - (-\sin(1) + \cos(1)) \]

(b) (8 points) Evaluate $\int_1^4 e^{\sqrt{x}} \, dx$.

\[\int_1^4 e^{\sqrt{x}} \, dx = \int_1^4 e^{u} \, du \quad \text{where} \quad u = \sqrt{x} \]

\[= \frac{e^u}{2} \bigg|_1^4 = \frac{e^{\sqrt{4}}}{2} - \frac{e^{\sqrt{1}}}{2} = \frac{e^2}{2} - \frac{e}{2} \]

We conclude that $\int_1^4 e^{\sqrt{x}} \, dx = \frac{e^2}{2} - e$.

+4 points

+3 points

+3 points

+2 points

+1 points

+1 points
Problem 3 (10 points)

Use calculus to find two non-negative numbers such that their sum is 1 and sum of their squares is as small as possible.

\[x+y \geq 0 \text{ such that } x+y=1. \text{ We want to minimize the function } f \text{ defined as } f(x,y) = x^2 + y^2. \] Due to the condition \(x+y=1 \), we can express \(f \) as a function of \(x \) only as

\[f(x) = x^2 + (1-x)^2 = 2x^2 - 2x + 1, \] which is valid for \(x \geq 0 \).

2 points

Note that we're searching for the absolute minimum of \(f \) on the closed interval \([0,1]\).

Since \(f \) is continuous on that interval, we need to check only the critical points and the endpoints of the given interval: \(f \) is a polynomial hence differentiable on \([0,1]\).

Differentiating we find \(f'(x) = 4x - 2 \). As a result, the critical point of \(f \) is \((0.5, 0.5) \) where \(f'(x) = 0 \). Solving for \(x \) we find \(4x - 2 = 0 \) \(\Rightarrow x = \frac{1}{2} \) hence \(y = 2\cdot \frac{1}{2}^2 - 2\cdot \frac{1}{2} + 1 = \frac{1}{2} \). The critical point of \(f \) is \((0.5, 0.5) \).

3 points

Checking the endpoints we get \((0,1)\) and \((1,0)\). Among these three points, \((0.5, 0.5)\) is the one with the smallest value for \(f \) hence we conclude that the absolute minimum value of \(f \) is \(\frac{1}{2} \), taken at the point \(x = \frac{1}{2} \).

2 points

As a conclusion, \(x = y = \frac{1}{2} \) are those numbers that we're looking for.
Problem 4 (15 points)
Use calculus to prove that the line $y = 4x + 7$ intersects the curve $y = 3 \sin x$ at exactly one point.

Let us define a function $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = 3 \sin x - 4x - 7$. Our aim is to prove that this function has exactly one root.

First of all, let us show that f has at least one root. f is continuous on \mathbb{R} hence on any interval, the hypotheses of the intermediate value theorem hold.

For $x = -\frac{3\pi}{2}$, $f(-\frac{3\pi}{2}) = 3 \sin (-\frac{3\pi}{2}) - 4(-\frac{3\pi}{2}) - 7 = 3 + 6\pi - 7 = 6\pi - 4 > 0$. For $x = \frac{\pi}{2}$, $f(\frac{\pi}{2}) = 3 \sin (\frac{\pi}{2}) - 4(\frac{\pi}{2}) - 7 = 3 - 2\pi - 7 = -2\pi - 4 < 0$. As a result of the intermediate value theorem, we conclude that there exists $c \in (-\frac{3\pi}{2}, \frac{\pi}{2})$ with $f(c) = 0$.

Then we should show that f has at most one root. Assume that f has two distinct roots x_1 and x_2 with $x_1 < x_2$. f is differentiable on \mathbb{R} hence it satisfies all the necessary hypotheses for Rolle's theorem (or the mean value theorem) on $[x_1, x_2]$. By Rolle's theorem, then, we conclude that there exists $x_0 \in (x_1, x_2)$ with $f'(x_0) = 0$. By differentiating f and putting x_0 in place of x we conclude that $f'(x) = 3 \cos x - 4 \Rightarrow f'(x_0) = 3 \cos x_0 - 4$ and $f'(x_0) = 0 \Rightarrow 3 \cos x_0 - 4 = 0 \Rightarrow \cos x_0 = \frac{4}{3} > 1$ which is impossible.

Thus our assumption that “f has two distinct roots” should be false. This observation finishes our work.
Problem 5 (20 points)

(a) (13 points) Determine the radius and the interval of convergence of the power series \(\sum_{n=1}^{\infty} \frac{(5x-3)^n}{n} \).

\[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(5x-3)^{n+1}}{n+1} \frac{n}{(5x-3)^n} \right| = \frac{|5x-3|}{1} \]

By the ratio test, \(\sum_{n=1}^{\infty} a_n \) converges absolutely for \(|5x-3| < 1 \) and diverges for \(|5x-3| > 1 \).

Rearranging \(|5x-3| < 1 \) as \(|x - \frac{3}{5}| < \frac{1}{5} \), we find the radius of convergence as \(R = \frac{1}{5} \). We're sure about the convergence of the series \(\sum_{n=1}^{\infty} \frac{(5x-3)^n}{n} \) on \((-\frac{2}{5}, \frac{4}{5}) \). In order to determine the interval of convergence, we need to check the behavior of the numerical series resulting from putting \(x = \frac{2}{5} \) and \(x = \frac{4}{5} \) in the given series. For \(x = \frac{2}{5} \) we obtain the series \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) which is convergent by the alternating series test. For \(x = \frac{4}{5} \) we obtain the famous harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \) which is divergent by the p-test. As a result, the interval of convergence of the power series \(\sum_{n=1}^{\infty} \frac{(5x-3)^n}{n} \) is \([-\frac{2}{5}, \frac{4}{5}] \).

(b) (7 points) Represent the function \(f(x) = \frac{1}{3x+4} \) as a power series.

\[f(x) = \frac{1}{3x+4} = \frac{1}{4} \cdot \frac{1}{1 - \left(-\frac{3x}{4} \right)} = \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{3x}{4} \right)^n \text{ for } \left| -\frac{3x}{4} \right| < 1 \]

or \(f(x) = \sum_{n=0}^{\infty} \frac{(-3)^n x^n}{4^{n+1}} \) valid for \(1x < \frac{4}{3} \).

- Any attempt to use \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \longrightarrow +5 \text{ points} \)

- Correct Taylor series formula for a general \(f \) \(\longrightarrow +4 \text{ points} \)
Problem 6 (20 points)
Suppose that the series $\sum_{n=0}^{\infty} c_n x^n$ converges when $x = -5$ and diverges when $x = 10$. For each of the following series, determine whether it is convergent or divergent; you need to justify your answer for full credit. (If a definite answer cannot be determined from the given information, give examples to explain why.)

(a) (4 points) $\sum_{n=0}^{\infty} c_n x^n$

$\sum_{n=0}^{\infty} c_n x^n$ converges for $|x|<R$ where R is the radius of convergence. Since $\sum_{n=0}^{\infty} c_n x^n$ converges when $x = -5$, $R \geq 5$. Hence $\sum_{n=0}^{\infty} c_n x^n$ converges when $x = 1$. Thus $\sum_{n=0}^{\infty} c_n$ converges.

(b) (4 points) $\sum_{n=0}^{\infty} (-1)^n c_n 11^n$

Since $\sum_{n=0}^{\infty} c_n x^n$ diverges when $x = 10$, $R < 10$. Hence for $x = -11$, $|x|>R$ and therefore $\sum_{n=0}^{\infty} (-1)^n c_n 11^n$ diverges.
not, since $R > 7$ or $R > 7$ both may happen. We cannot decide whether $\sum_{n=0}^{\infty} c_n z^n$ converges.

We have $10 > R \geq 5$. From this information,

\[\sum_{n=0}^{\infty} c_n (-4)^n \]

converges.

Since $R \geq 5$, $|z| = 4 > R$. Hence

\[\sum_{n=0}^{\infty} c_n (-4)^n \]
Problem 7 (15 points)

Determine whether the series below are convergent or divergent. Justify your answer by explicitly stating what test you are appealing to and how you use that test.

(a) (5 points) \[\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \] Since \(\frac{1}{n(\ln n)^2} > 0 \) for every \(n \geq 2 \)

and \(f(x) = \frac{1}{x(\ln x)^2} \) is continuous, decreasing for all \(x \geq N \)

we can apply integral test. \(\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx = \int_{2}^{\infty} \frac{du}{u^2} = -\frac{1}{u} \)

Hence \(\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx = \lim_{b \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln b} \right) = \frac{1}{\ln 2} \)

Thus \(\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx \) converges, so \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \) converges.

(b) (5 points) \[\sum_{n=1}^{\infty} \frac{1}{1 + \sin(1/n)} \]

Since \(\lim_{n \to \infty} \frac{1}{1 + \sin(1/n)} = \lim_{n \to \infty} \frac{1}{1 + \sin(1/n)} = 1 \neq 0 \), by n-th term test,

\[\sum_{n=1}^{\infty} \frac{1}{1 + \sin(1/n)} \] diverges.

(c) (5 points) \[\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1} \]

Since \(\frac{n^2}{n^4 - 1} < \frac{n^2 + 1}{n^4 - 1} \), we have

\[\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1} < \sum_{n=2}^{\infty} \frac{n^2 + 1}{n^4 - 1} = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} \] Now \(\frac{1}{n^2 - 1} = \frac{1}{(n-1)(n+1)} = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \)

Hence \(\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{1}{2} \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \lim_{N \to \infty} \sum_{n=2}^{N} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \)

\[= \frac{1}{2} \lim_{N \to \infty} \left(1 + \frac{1}{2} - \frac{1}{N+1} \right) = \frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{3}{4} \], Hence \(\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1} \) is convergent and by comparison test \(\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1} \) is convergent.