1) Complete this table for water:

<table>
<thead>
<tr>
<th>T, °C</th>
<th>P, kPa</th>
<th>h, kJ/kg</th>
<th>x</th>
<th>Phase description</th>
</tr>
</thead>
<tbody>
<tr>
<td>120.21</td>
<td>200</td>
<td>2045.8</td>
<td>0.7</td>
<td>Saturated mixture</td>
</tr>
<tr>
<td>140</td>
<td>361.53</td>
<td>1800</td>
<td>0.565</td>
<td>Saturated mixture</td>
</tr>
<tr>
<td>177.66</td>
<td>950</td>
<td>752.74</td>
<td>0</td>
<td>Saturated liquid</td>
</tr>
<tr>
<td>80</td>
<td>500</td>
<td>335.37</td>
<td>-</td>
<td>Compressed liquid</td>
</tr>
<tr>
<td>350.0</td>
<td>800</td>
<td>3162.2</td>
<td>-</td>
<td>Superheated vapor</td>
</tr>
</tbody>
</table>

2) Complete this table for refrigerant R-134a:

<table>
<thead>
<tr>
<th>T, °C</th>
<th>P, kPa</th>
<th>h, kJ/kg</th>
<th>x</th>
<th>Phase description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.55</td>
<td>600</td>
<td>180</td>
<td>0.545</td>
<td>Saturated mixture</td>
</tr>
<tr>
<td>-10</td>
<td>200.74</td>
<td>162.13</td>
<td>0.6</td>
<td>Saturated mixture</td>
</tr>
<tr>
<td>-14</td>
<td>500</td>
<td>35.40</td>
<td>-</td>
<td>Compressed liquid</td>
</tr>
<tr>
<td>70</td>
<td>1200</td>
<td>300.61</td>
<td>-</td>
<td>Superheated vapor</td>
</tr>
<tr>
<td>44</td>
<td>1131</td>
<td>272.95</td>
<td>1.0</td>
<td>Saturated vapor</td>
</tr>
</tbody>
</table>

3. (Problem 3.39 in book) Water initially at 300 kPa and 250°C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. On the T-v diagram sketch, with respect to the saturation lines, the process curves passing through both the initial, intermediate, and final states of the water. Label the T, P and v values for end states on the process curves. Find the overall change in internal energy between the initial and final states per unit mass of water.

Analysis The process is shown on T-v diagram. The internal energy at the initial state is

\[
\begin{align*}
 & P_1 = 300 \text{ kPa} \\
 & T_1 = 250^\circ \text{C} \\
 \implies & u_1 = 2728.9 \text{ kJ/kg} \text{ (Table A - 6)}
\end{align*}
\]

State 2 is saturated vapor at the initial pressure. Then,

\[
\begin{align*}
 & P_2 = 300 \text{ kPa} \\
 & x_2 = 1 \text{ (sat. vapor)} \\
 \implies & u_2 = 0.6058 \text{ m}^3/\text{kg} \text{ (Table A - 5)}
\end{align*}
\]

Process 2-3 is a constant-volume process. Thus,

\[
\begin{align*}
 & P_3 = 100 \text{ kPa} \\
 & v_2 = 0.6058 \text{ m}^3/\text{kg} \\
 \implies & u_3 = 1163.3 \text{ kJ/kg} \text{ (Table A - 5)}
\end{align*}
\]

The overall change in internal energy is

\[
\Delta u = u_1 - u_3 = 2728.9 - 1163.3 = 1566 \text{ kJ/kg}
\]
4. **(Problem 3.55 in book)** A rigid tank contains water vapor at 250°C and an unknown pressure. When the tank is cooled to 124°C, the vapor starts condensing. Estimate the initial pressure in the tank. *(Answers: 0.30MPa)*

Analysis This is a constant volume process \(\nu = \frac{V}{m} = \text{constant} \), and the initial specific volume is equal to the final specific volume that is

\[
\nu_1 = \nu_2 = \nu_{x@124°C} = 0.79270 \text{ m}^3/\text{kg} \quad \text{(Table A-4)}
\]

since the vapor starts condensing at 150°C. Then from Table A-6,

\[
\begin{align*}
T_1 &= 250°C \\
\nu_1 &= 0.79270 \text{ m}^3/\text{kg} \\
\end{align*}
\]

\[
\begin{align*}
\text{P}_1 &= 0.30 \text{ MPa}
\end{align*}
\]

5. **(Problem 3.58 in book)** 100 grams of R-134a initially fill a weighted piston-cylinder devices at 60 kPa and -20°C. The device is then heated until the temperature is 100°C. Determine the change in the device's volume as a result of the heating. *(Answers: 0.0168 m³)*

Analysis The initial specific volume is

\[
\begin{align*}
P_1 &= 60 \text{ kPa} \\
T_1 &= -20°C \\
\nu_1 &= 0.33608 \text{ m}^3/\text{kg} \quad \text{(Table A-13)}
\end{align*}
\]

and the initial volume is

\[
\begin{align*}
\nu_1 &= m \nu_1 = (0.100 \text{ kg})(0.33608 \text{ m}^3/\text{kg}) = 0.033608 \text{ m}^3
\end{align*}
\]

At the final state, we have

\[
\begin{align*}
P_2 &= 60 \text{ kPa} \\
T_2 &= 100°C \\
\nu_2 &= 0.50410 \text{ m}^3/\text{kg} \quad \text{(Table A-13)}
\end{align*}
\]

\[
\begin{align*}
\nu_2 &= m \nu_2 = (0.100 \text{ kg})(0.50410 \text{ m}^3/\text{kg}) = 0.050410 \text{ m}^3
\end{align*}
\]

The volume change is then

\[
\Delta \nu = \nu_2 - \nu_1 = 0.050410 - 0.033608 = 0.0168 \text{ m}^3
\]