1. Let G be an abelian group and $T = \{x \in G : \exists n \in \mathbb{N} \text{ such that } x^n = e\}$. Prove that T is a subgroup of G (T is known as the torsion subgroup of G).

2. Prove that if H and K are subgroups of an abelian group G, then $\{hk | h \in H \text{ and } k \in K\}$ is a subgroup of G.

3. Let G be a group, $a \in G$, and define $H_a = \{x \in G : xa = ax\}$. Prove that H_a is a subgroup of G. (H_a is known as the centralizer of a. The notation $C(a)$ is also used for H_a)

4. Let S be any subset of a group G.
 a) Prove that $H_S = \{x \in G | xs = sx \text{ for all } s \in S\}$ is a subgroup of G.
 b) Prove that H_G is an abelian group. (H_G is known as the center of G.)

5. Prove that every cyclic group is abelian.

6. Prove that a group with no proper nontrivial subgroup is cyclic.

7. Prove that a cyclic group with only one generator can have at most 2 elements.

8. Prove that if H and K are subgroups of the group G, then $H \cap K$ is a subgroup of G.

9. Give an example of a group and subgroups of H, K, L of G such that $H \cup K \cup L$ is a subgroup of G.

10. Let G be a group and A, B, C be subgroups of G with A is a subgroup of C. Prove that $A(B \cup C) = AB \cup C$.

11. Let G be a group and H a subgroup of G satisfying: whenever $Ha \neq Hb$ then $aH \neq bH$, for $a, b \in G$. Prove that $gHg^{-1} \subseteq H$ for all $g \in G$.

12. Find the right cosets and the left cosets of the subgroup $(H_n, +)$ of $(\mathbb{Z}, +)$ where H_n is the set of all multiples of n.