MATH 205 ALGEBRA I (FALL 2002)
HOMEWORK ASSIGNMENT V

1. Let \(N = \{ a_b : b \in \mathbb{R} \} \). Prove that \(N \) is a normal subgroup of \(G \), where \(G \) is defined as in question 1 of homework assignment III.

2. Let \(G \) be a group, \(H \) a subgroup of \(G \), and \(N \) a normal subgroup of \(G \). Prove that \(H \cap N \) is a normal subgroup of \(H \).

3. a) Let \(G \) be a group, \(H \) a subgroup of \(G \), and \(N \) a normal subgroup of \(G \). Prove that \(NH \) is a subgroup of \(G \).
 b) If both \(N \) and \(H \) are normal subgroups of \(G \), prove that \(NH \) is also a normal subgroup of \(G \).

4. Let \(G \) be a group and \(\{ N_\alpha \} \), \(\alpha \in I \) be a collection of normal subgroups of \(G \). Prove that \(\bigcap_{\alpha \in I} N_\alpha \) is a normal subgroup of \(G \).

5. Let \(G \) be a group and \(N \) and \(M \) be normal subgroups of \(G \) such that \(N \cap M = \{ e \} \). Prove that \(nm = mn \) for all \(n \in N \) and for all \(m \in M \).

6. Let \(G \) be a group, \(H \) a subgroup of \(G \), and \(N \) a normal subgroup of \(G \). Prove that \(HN = NH \).

7. Let \(G \) be a group, \(H \) a subgroup of \(G \), and \(N \) a normal subgroup of \(G \). Prove that \(N \) is a normal subgroup of \(HN \).

8. Let \(p \) and \(q \) be prime numbers. Find the number of generators of the cyclic group \(\mathbb{Z}_pq \).

9. Let \(p \) be a prime number. Find the number of generators of the cyclic group \(\mathbb{Z}_{pr} \), where \(r \) is an integer \(\geq 1 \).

10. Let \(G \) be an abelian group and \(a \) and \(b \) be two elements of finite order of \(G \). Prove that if the orders, \(o(a) \) and \(o(b) \) of \(a \) and \(b \) are relatively prime, then \(o(ab) = o(a)o(b) \).