MATH 205 ALGEBRA I (FALL 2002)
HOMEWORK ASSIGNMENT VI

1. Prove that the center H_G of a group G as defined in question 4 of HW Assignment IV is a normal subgroup of G.

2. If G is a torsion group (i.e. the elements of G are of finite order) and N is a normal subgroup of G. Prove that G/N is also a torsion group.

3. Let G and G' be groups and ϕ be an homomorphism from G to G'. Prove that $\phi(a) = \phi(b)$ if and only if $aKer\phi = bKer\phi$, where a and b are arbitrary elements of G.

4. Let G and G' be groups, A and B subgroups of G such that A is a normal subgroup of B. Let ϕ be an homomorphism from G to G'. Prove that $\phi(A)$ is a normal subgroup of $\phi(B)$.

5. Prove that any infinite cyclic group G is isomorphic to the group $(\mathbb{Z}, +)$.

6. Prove that any two cyclic groups of the same order is isomorphic.

7. Let G be an abelian group. Prove that if the group G' is isomorphic to G then G' is abelian also.

8. Let G be a cyclic group. Prove that if the group G' is isomorphic to G then G' is cyclic also.

9. Let G be the group defined as in question 1 of HW Assignment III and N be a normal subgroup defined as in question 1 of HW Assignment V. Prove that G/N is isomorphic to (\mathbb{R}^*, \cdot).