MATH 206 ALGEBRA II (SPRING 2003)
HOMEWORK ASSIGNMENT I

1. Prove that \(\mathbb{Z}[\sqrt{2}] = \{ n + \sqrt{2}m : n, m \in \mathbb{Z} \} \), for the usual addition and product of real numbers, is a ring but not a field.

2. Prove that \(\mathbb{Q}[\sqrt{2}] = \{ n + \sqrt{2}m : n, m \in \mathbb{Q} \} \), for the usual addition and product of real numbers, is a field.

3. Prove that \(\mathbb{Z}[\sqrt{2}] \) is the smallest subring of \(\mathbb{R} \) containing \(\mathbb{Z} \) and \(\sqrt{2} \). (A subring of a ring is a subset of the ring that is a ring under induced operations from the whole ring.)

4. Consider the matrix ring \(M_2(\mathbb{Z}_2) \). Find the order of the ring, that is, the number of elements in it. List all units, in the ring.

5. Give an example of a ring with unity \(1 \neq 0 \) that has a subring with nonzero unity \(1' \neq 1 \).

6. Prove that if \(U \) is the collection of all units in a ring \((R, +, \cdot)\) with unity, then \((U, \cdot)\) is a group.

7. An element \(a \) of a ring \(R \) is nilpotent if \(a^n = 0 \) for some \(n \in \mathbb{Z}^+ \). Prove that if \(a \) and \(b \) are nilpotent elements of a commutative ring, then \(a + b \) is also nilpotent.

8. Prove that a subset \(S \) of a ring \(R \) gives a subring of \(R \) if and only if the following hold:
 - \(0 \in S \);
 - \((a - b) \in S \) for all \(a, b \in S \);
 - \(ab \in S \) for all \(a, b \in S \).

9. Let \(R \) be a ring, and let \(a \) be a fixed element of \(R \). Let \(I_a = \{ x \in R | ax = 0 \} \). Prove that \(I_a \) is a subring of \(R \).

10. a) Prove that an intersection of subrings of a ring \(R \) is again a subring of \(R \).
 b) Prove that an intersection of subfields of a field \(F \) is again a subfield of \(F \).

11. Let \(R \) be a ring that contains at least two elements. Suppose for each nonzero \(a \in R \), there exists a unique \(b \in R \) such that \(aba = a \).
 a) Prove that \(R \) has no zero divisors. (Hint: Start from \(ac = 0 \) or \(ca = 0 \), where \(a \neq 0 \) and then consider \(a(b + c)a \))
 b) Prove that \(bab = b \).
 c) Prove that \(R \) has unity.
 d) Prove that \(R \) is a division ring.