Math 302. Homework 7b

Solve the following problems:

1. True or false? Why?
 (1) The function
 \[
 f(x) = \begin{cases}
 x^3, & x \text{ - irrational,} \\
 1, & x \text{ - rational}
 \end{cases}
 \]
 is Lebesgue integrable on \([0, 1]\).

2. If a function \(f\) is bounded on \([0, 1]\) and Lebesgue integrable, then the functions
 \([f(x)]^4, |f(x)|, \frac{1}{f(x)}\) are Lebesgue integrable on \([0, 1]\).

3. If \(f\) is continuous on \([0, 1]\) and
 \[
 \int_0^1 x^k f(x) dx = 0, \quad k = 1, 2, \ldots
 \]
 then \(f \equiv 0\) on \([0, 1]\).

4. If \(f\) is Lebesgue integrable on \([0, 1]\) and
 \[
 \int_0^1 x^k f(x) dx = 0, \quad k = 1, 2, \ldots
 \]
 then \(f = 0\) a.e. in \([0, 1]\).

5. Let \(\{f_n\} \subset L^p[a, b], 1 < p < \infty, \{f_n\}\) converges in \(L^p[a, b]\) to \(f\), and let \(\{g_n\}\) is a sequence of measurable functions such that \(|g_n| \leq M, n = 1, 2, \ldots\) and \(g_n \to g\) a.e. Then
 \[f_n g_n \to \text{ in } L^p[a, b].\]