9. Relations

Relations are discrete structures that are used to represent relationships between elements of sets.

Relations can be used to solve problems such as:
- Determining which pairs of cities are linked by airline flights in a network,
- Computing the distance between a pair of registered Facebook users,
- Finding an efficient order for different phases of a complicated project,
- Producing a useful way to store information in computer databases, etc.
9.1 Relations and Their Properties

Definition: Binary relation
Let A, B be sets. A binary relation R from A to B is a set of ordered pairs, hence a subset of $A \times B$.

Notation:
- a is “related to” b by R: $a \ R \ b : \ (a,b) \in R; \ a \in A, \ b \in B$
- a is “not related to” b by R: $a \not\mathrel{R} b : \ (a,b) \notin R$
e.g.

A: set of cities

B: set of countries

R: $(a, b) \in R$ if city a is in country b.

$(\text{Izmir, Turkey}), (\text{Paris, France}) \in R$
Function is a special case of relation

A function f from A to B can be thought of as the set of ordered pairs (a, b) s.t. $b = f(a)$

Since the function f is a subset of $A \times B$, f is a relation from A to B.

Function is a special case of relation: Every element of A is the first element of exactly one ordered pair of the function f.

\[
\begin{array}{c}
0 \xrightarrow{f} a \\
1 \xrightarrow{f} b \\
2 \xrightarrow{f} \end{array}
\]
Relations defined on a single set:

Definition:
A relation on a set \(A \) is a relation from \(A \) to \(A \).

e.g.
\[
A = \{1, 2, 3, 4\} \\
R = \{(a, b) \mid a \mid b, (a, b) \in A \times A\} \\
= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}
\]
Relations defined on a single set:

Definition:
A relation on a set A is a relation from A to A.

e.g.
\[
A = \{1, 2, 3, 4\}
\]
\[
R = \{(a, b) \mid a \mid b, (a, b) \in A \times A\}
\]
\[
= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}
\]

e.g.
How many relations are there on a set with n elements?
\[
|A \times A| = n^2
\]
\[
\therefore 2^n \text{ (# of subsets of } A \times A)\]
Properties of Relations defined on a set:

Definition:
A relation R on a set A is called reflexive iff

$$(a, a) \in R \quad \forall a \in A$$

e.g.

$A = \{1, 2, 3\}$

$R_1 = \{(1, 2), (2, 2), (1, 3)\}$ (not reflexive)

$R_2 = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$ (reflexive)

$R_3 = \{(1, 3), (3, 1)\}$ (irreflexive)
Properties of Relations defined on a set:

Definition:
A relation R on a set A is called **reflexive** iff

$$(a, a) \in R \quad \forall a \in A$$

e.g.

$A = \{1, 2, 3\}$

$R_1 = \{(1, 2), (2, 2), (1, 3)\}$ \hspace{1em} (not reflexive)

$R_2 = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$ \hspace{1em} (reflexive)

$R_3 = \{(1, 3), (3, 1)\}$ \hspace{1em} (irreflexive)

e.g.

R: The set of pairs of people having the same eye color \hspace{1em} (reflexive)
Definition:
A relation R on a set A is called

symmetric iff the following holds

$$(b,a) \in R \implies (a,b) \in R \quad \forall a, b \in A$$
Definition:
A relation R on a set A is called

- **symmetric** iff the following holds
 \[(b,a) \in R \rightarrow (a,b) \in R \quad \forall a, b \in A\]

- **anti-symmetric** iff the following holds
 \[(a,b) \in R \text{ and } (b,a) \in R \rightarrow a = b \quad \forall a, b \in A\]
Definition:
A relation R on a set A is called

symmetric iff the following holds

$$(b,a) \in R \rightarrow (a,b) \in R \quad \forall a,b \in A$$

anti-symmetric iff the following holds

$$(a,b) \in R \text{ and } (b,a) \in R \rightarrow a = b \quad \forall a,b \in A$$

e.g.

$R_t = \{(a,b) \mid a \text{ is taller than } b\}$ anti-symmetric

$R = \{(a,b) \mid a+b+ab = 12; \ a,b \in \mathbb{Z}\}$ symmetric
Definition:
A relation R on a set A is called

symmetric iff the following holds
$$(b,a) \in R \rightarrow (a,b) \in R \quad \forall a,b \in A$$

anti-symmetric iff the following holds
$$(a,b) \in R \text{ and } (b,a) \in R \rightarrow a = b \quad \forall a,b \in A$$

e.g.
$R_t = \{(a,b) \mid a \text{ is taller than } b\}$ anti-symmetric

$R = \{(a,b) \mid a+b+ab = 12; \, a,b \in \mathbb{Z}\}$ symmetric

asymmetric iff $\forall a,b \in A \ (a,b) \in R \rightarrow (b,a) \notin R$
Definition:

R on set A is called **transitive** iff

$$(a,b) \in R \text{ and } (b,c) \in R \rightarrow (a,c) \in R \quad \forall a,b,c \in A.$$

e.g.

$$R_t = \{(a,b) \mid a \text{ is taller than } b\} \text{ transitive?}$$
Definition:
R on set A is called **transitive** iff
$$(a, b) \in R \quad \text{and} \quad (b, c) \in R \quad \rightarrow \quad (a, c) \in R \quad \forall a, b, c \in A.$$

e.g.
$$R_t = \{(a, b) \mid a \text{ is taller than } b\} \text{ transitive?}$$

e.g.
$$A = \{1, 2, 3\}$$

$$R_1 = \{(1, 2), (2, 3), (1, 3)\} \quad \text{(transitive)}$$

$$R_2 = \{(1, 2), (2, 3)\} \quad \text{(not transitive)}$$

$$R_3 = \{(1, 2)\} \quad (?)$$
e.g.
How many reflexive relations are there on a set with \(n \) elements?

If \(R \) is reflexive, then:
- there are \(n \) pairs such that \((a, a) \in R\)
- and \(n(n-1) \) pairs such that \((a, b) \in R\) where \(a \neq b \)

\[\Rightarrow \text{# of reflexive relations} = 2^{n(n-1)} \]

e.g.
How many symmetric relations are there on a set with \(n \) elements? (Exercise)
Combining relations:

Let \(A = \{a, b\} \) \quad B = \{1, 2, 3\}

\[R_1 = \{(a, 1), (b, 3)\} \]
\[R_2 = \{(a, 1), (a, 2), (b, 1), (b, 2)\} \]
\[R_3 = \{(b, 1), (b, 2)\} \]
\[R_4 = \{(a, 1), (b, 2)\} \]

\[R_1 \cup R_3 = \{(a, 1), (b, 1), (b, 2), (b, 3)\} \]
\[R_1 \cap R_2 = \{(a, 1)\} \]
\[R_2 \setminus R_3 = \{(a, 1), (a, 2)\} \]
\[R_1 \oplus R_4 = \{(b, 2), (b, 3)\} \]

\(\oplus \) is called “symmetric difference”, acts like XOR
Definition: Let $R: A \to B$ and $S: B \to C$. Then the **composite relation** of R and S,

$$S \circ R: A \to C$$

is defined s.t.

$$(a, c) \in S \circ R \text{ iff } (a, b) \in R \text{ and } (b, c) \in S.$$
Definition: Let $R: A \rightarrow B$ and $S: B \rightarrow C$. Then the **composite relation** of R and S,

$S \circ R: A \rightarrow C$ is defined s.t.

$$(a, c) \in S \circ R \text{ iff } (a, b) \in R \text{ and } (b, c) \in S.$$

Definition:
Let R be a relation on A.
The **powers** R^n, $n = 1, 2, 3, \ldots$, are defined by

$R^1 = R, \quad R^2 = R \circ R, \ldots \quad R^n = R^{n-1} \circ R.$

e.g.

$R = \{(a,b) \mid b \text{ is a parent of } a\}$

$\Rightarrow R^2 = \{(a,c) \mid c \text{ is a grand-parent of } a\}$ why?

since $(a,b) \in R$ means “b is a parent of a”, and $(b,c) \in R$ means “c is a parent of b”.
Theorem:

R on a set A is transitive iff $R^n \subseteq R$ for all $n = 1, 2, 3, \ldots$
Theorem:
R on a set A is transitive iff $R^n \subseteq R$ for all $n = 1, 2, 3,\ldots$

Proof:

If part: (if $R^n \subseteq R$ for $n = 1, 2, 3,\ldots$, then R is transitive)
If $R^n \subseteq R$, in particular $R^2 \subseteq R$.
Then, if $(a,b) \in R$ and $(b,c) \in R$, by definition $(a,c) \in R^2$. Since $R^2 \subseteq R$, $(a,c) \in R$.
∴ R is transitive.

Only if part: (If R is transitive, then $\forall n \ R^n \subseteq R$) Use induction on n.

Theorem:
\(R \) on a set \(A \) is transitive iff \(R^n \subseteq R \) for all \(n = 1, 2, 3, \ldots \)

Proof:

If part: (if \(R^n \subseteq R \) for \(n = 1, 2, 3, \ldots \), then \(R \) is transitive)
If \(R^n \subseteq R \), in particular \(R^2 \subseteq R \).
Then, if \((a,b)\in R \) and \((b,c)\in R \), by definition \((a,c)\in R^2 \). Since \(R^2 \subseteq R \), \((a,c)\in R \).
\(\therefore \) \(R \) is transitive.

Only if part: (If \(R \) is transitive, then \(\forall n \ R^n \subseteq R \)) Use induction on \(n \).
Basis step: \(R^1 \subseteq R \); true for \(n = 1 \).
Inductive step: Assume \(R^n \subseteq R \) and \(R \) is transitive. Show \(R^{n+1} \subseteq R \).
Theorem:
R on a set A is transitive iff $R^n \subseteq R$ for all $n = 1, 2, 3,\ldots$

Proof:

If part: (if $R^n \subseteq R$ for $n = 1, 2, 3,\ldots$, then R is transitive)
If $R^n \subseteq R$, in particular $R^2 \subseteq R$.
Then, if $(a, b) \in R$ and $(b, c) \in R$, by definition $(a, c) \in R^2$. Since $R^2 \subseteq R$, $(a, c) \in R$.
\[\therefore \] R is transitive.

Only if part: (If R is transitive, then $\forall n \ R^n \subseteq R$) Use induction on n.
Basis step: $R^1 \subseteq R$; true for $n = 1$.
Inductive step: Assume $R^n \subseteq R$ and R is transitive. Show $R^{n+1} \subseteq R$.

Let $(a, b) \in R^{n+1} = R^n \circ R$.
Then $\exists x \in A$ s.t. $(a, x) \in R$ and $(x, b) \in R^n$. Since $R^n \subseteq R$, $(x, b) \in R$.
Since R is transitive and $(a, x) \in R$, we have $(a, b) \in R$
\[\therefore \] $R^{n+1} \subseteq R$
Inverse and Complementary:

Inverse of \(R \): \(R^{-1} = \{(b, a) \mid (a, b) \in R\} \)

Complementary of \(R \): \(\overline{R} = \{(a, b) \mid (a, b) \notin R\} \)
Inverse and Complementary:

Inverse of R: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$

Complementary of R: $\bar{R} = \{(a, b) \mid (a, b) \notin R\}$

e.g.

Let $R = \{(a, b) \mid a < b\}$ $R: A \to B$.

Inverse of R: $R^{-1} = \{(b, a) \mid a < b\}$
Complementary of R: $\bar{R} = \{(a, b) \mid a \geq b\}$
e.g.
R, S are reflexive relations on A.

a) $R \cup S$ is reflexive? Yes, since $(x, x) \in R$
b) $R \cap S$ is reflexive?

\checkmark

so does $R \cup S$
c) $R \oplus S$ is irreflexive?

\checkmark
d) $R - S$ is irreflexive?

\checkmark
e) $S \circ R$ is reflexive?

\checkmark
f) R^{-1} is reflexive?
g) Complementary of R is irreflexive?
e.g.
Suppose R is **irreflexive**. Is R^2 also irreflexive?
No. Counter-example: Let $a \neq b$ and $R = \{(a, b), (b, a)\}$
9.2 \(n \)-ary Relations and Their Applications

Definition:
Let \(A_1, A_2, \ldots, A_n \) be sets.
An \(n \)-ary relation on these sets is a subset of \(A_1 \times A_2 \times \ldots \times A_n \).

The sets \(A_i \): Domains of the relation
\(n \): Degree of the relation

e.g.
\[
R = \{(a, b, c) \mid a < b < c\}
\]
Databases and Relations

The way we organize information in a database is important. Operations such as add/delete record, update records, search for record, all have heavy computation.

∴ Various methods for representing databases exist.

One method in particular is relational data model.

A database consists of records of n-tuples, made up of domains (fields).

e.g. Airflight Company (Flight No, Departure, Destination, Date)

You will have an elective database course in 3rd or 4th year.
9.3 Representing Relations

Definition: A relation R can also be represented by a matrix $M_R = [m_{ij}]$:

$$m_{ij} = \begin{cases}
1 & \text{if } (a_i, b_j) \in R \\
0 & \text{if } (a_i, b_j) \notin R
\end{cases}$$

E.g. Let $A = \{1, 2\}$, $B = \{a, b, c\}$ and $R: A \rightarrow B$ such that $R = \{(1, b), (2, a), (2, b), (2, c)\}$

$$M_R = \begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}$$
9.3 Representing Relations

Definition: A relation R can also be represented by a matrix $M_R = [m_{ij}]$:

\[
m_{ij} = \begin{cases}
1 & \text{if } (a_i, b_j) \in R \\
0 & \text{if } (a_i, b_j) \notin R
\end{cases}
\]

E.g. Let $A = \{1, 2\}$, $B = \{a, b, c\}$ and $R: A \to B$ such that $R = \{(1, b), (2, a), (2, b), (2, c)\}

\[
M_R = \begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

E.g. Let R be a relation defined on $A = \{1, 2, 3\}$: $R = \{(1, 2), (2, 2), (1, 3)\}

\[
M_R = \begin{bmatrix}
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Note that we get a square matrix whenever $R: A \to A$.

- Reflexive relation R s.t. $(a_i, a_i) \in R$
 \[\Rightarrow \forall i \; m_{ii} = 1 \]
 i.e., $M_R = \begin{bmatrix} 1 & & \cdots & 1 \\ & 1 & \cdots & \cdot \\ \vdots & \cdot & \ddots & \cdot \\ \cdot & \cdot & \cdots & 1 \end{bmatrix}$ diagonal with all ones

- Symmetric relation R s.t. $(a_i, a_j) \in R \iff (a_j, a_i) \in R$
 \[\Rightarrow \forall i, j \; m_{ij} = m_{ji} \]
 $M_R = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \cdot & \ddots & \cdot \\ 0 & \cdot & \cdots & 0 \end{bmatrix}$ Symmetric matrix
 ($M_R = M^T_R$)
- Inverse and complementary relations:

If $M_R = [m_{ij}]_{m \times n}$, then

Inverse: $M_R^{-1} = [m_{ji}]_{n \times m}$ (transpose)

Complementary: $\overline{M_R} = [-m_{ij}]_{m \times n}$ (negation)
Using Zero – One Matrices:

A matrix with entries that are either 0 or 1 is called a **zero-one matrix**.

Definition:

\[
A = [a_{ij}], \quad B = [b_{ij}] \quad m \times n \text{ zero-one matrices}
\]

Join of A, B: \(A \lor B = [a_{ij} \lor b_{ij}] \)

Meet of A, B: \(A \land B = [a_{ij} \land b_{ij}] \)

e.g.

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix} \quad B = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

\[
A \lor B = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1
\end{bmatrix} \quad A \land B = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]
Using Zero – One Matrices:

A matrix with entries that are either 0 or 1 is called a **zero-one matrix**.

Definition:

\[A = \begin{bmatrix} a_{ij} \end{bmatrix}, \quad B = \begin{bmatrix} b_{ij} \end{bmatrix} \quad m \times n \text{ zero-one matrices} \]

Join of \(A, B \): \(A \lor B = [a_{ij} \lor b_{ij}] \)

Meet of \(A, B \): \(A \land B = [a_{ij} \land b_{ij}] \)

e.g.

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix} \quad \quad B = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

\[
A \lor B = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1
\end{bmatrix} \quad A \land B = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

Remark: Let \(R_1: A \rightarrow B \) and \(R_2: A \rightarrow B \)

\[
\begin{align*}
M_{R_1 \cup R_2} &= M_{R_1} \lor M_{R_2} \\
M_{R_1 \cap R_2} &= M_{R_1} \land M_{R_2}
\end{align*}
\]
Definition: **Boolean product**
Let \(A = [a_{ij}] : m \times k \), \(B = [b_{ij}] : k \times n \) zero-one matrices

\[
A \odot B = [c_{ij}] : m \times n, \text{ where }
\]

\[
c_{ij} = (a_{i1} \wedge b_{1j}) \lor (a_{i2} \wedge b_{2j}) \lor \ldots \lor (a_{ik} \wedge b_{kj})
\]
e.g.

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix}_{3 \times 2}
\]

\[
B = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}_{2 \times 3}
\]

\[
A \oplus B = \begin{bmatrix}
(1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\
(0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\
(1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}_{3 \times 3}
\]
e.g.

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix}_{3 \times 2} \quad B = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}_{2 \times 3}
\]

\[
A \odot B = \begin{bmatrix}
(1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\
(0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\
(1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}_{3 \times 3}
\]

Remark: Let $R: A \rightarrow B$ and $S: B \rightarrow C$

\[
M_{S \circ R} = M_R \odot M_S
\]
Definition: r th **Boolean Power**
Let A be a square $(n \times n)$ zero-one matrix and r be a positive integer.

$$A^r = A \odot A \odot \ldots \odot A$$
r times

$$A^0 = I_n$$

Remark: Let $R: A \rightarrow A$

$$M_{R^a} = [M_R]^n$$
Representing Relations Using Graphs:

Pictorial representation.

Definition:
A directed graph (digraph) consists of a set V of vertices (or nodes) along with a set E of edges (or arcs) which are ordered pairs of vertices.

Edge(a, b): a is initial vertex (node), b is terminal vertex (node)

e.g.

\[R = \{(a, b), (b, c), (c, b), (c, c)\} \]

Relation R on a set A is defined with
i) elements of A: vertices (nodes)
ii) ordered pairs $(a, b)\in R$: edges
Relation R is:
- reflexive iff every node has a loop
- symmetric iff every edge between two nodes has an edge in the opposite direction.
- transitive iff edge $(a, b) \land \text{edge} (b, c) \rightarrow \text{edge} (a, c) \ \forall a,b,c$

\[e.g. \]

\[\text{reflexive} \]
Example to graph representation of a relation:

Connectivity problems:

1) Which nodes are connected?
2) What is the shortest path between two nodes?
9.4 Closures of Relations

e.g. Let $R = \{(1, 1), (1, 2), (3, 2)\}$ on $A = \{1, 2, 3\}$

R is not reflexive; what is the smallest possible reflexive relation containing R?
9.4 Closures of Relations

e.g. Let $R = \{(1,1), (1, 2), (3, 2)\}$ on $A = \{1, 2, 3\}$

R is not reflexive; what is the smallest possible reflexive relation containing R?

$$S = \{(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)\}$$

S is the reflexive closure of R.
Definition: Closure
Let R be a relation on A

P: some property, such as symmetry, reflexivity, transitivity

R may or may not have the property P.

The **closure** S is the smallest possible set with property P, which contains R.
Definition: Closure
Let R be a relation on A

P: some property, such as symmetry, reflexivity, transitivity

R may or may not have the property P.

The **closure** S is the smallest possible set with property P, which contains R.

More formal definition of **closure**:

If there is a relation S with property P containing R s.t. S is the subset of every relation with property P containing R, then S is called the **closure** of R with P.
Reflexive Closure:

Let \(R = \{(1,1), (1, 2), (3, 2)\} \) on \(A = \{1, 2, 3\} \)

The smallest possible reflexive relation containing \(R \):

\[
S = \{(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)\}
\]

\(S = \text{Reflexive closure of } R = R \cup \Delta, \)
where \(\Delta = \{(a, a) \mid a \in A\} \) : diagonal relation
Reflexive Closure:

Let $R = \{(1,1), (1, 2), (3, 2)\}$ on $A = \{1, 2, 3\}$

The smallest possible reflexive relation containing R:

$$S = \{(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)\}$$

$S = \text{Reflexive closure of } R = R \cup \Delta,$

where $\Delta = \{(a, a) \mid a \in A\}$: diagonal relation

e.g.

$$R = \{(a, b) \mid a < b\}, \quad \text{reflexive closure?}$$

$$R \cup \Delta = \{(a, b) \mid a < b\} \cup \{(a, a) \mid a \in \mathbb{Z}\}$$

$$= \{(a, b) \mid a \leq b\}$$
Symmetric Closure:

Let $R = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)\}$ on $A = \{1, 2, 3\}$

We should add all ordered pairs (b,a), where (a, b) is in R and (b, a) is not in R. Symmetric closure of $R = R \cup \{(3, 2), (1, 3)\}$
Symmetric Closure:

Let \(R = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)\} \) on \(A = \{1, 2, 3\} \)

We should add all ordered pairs \((b,a)\), where \((a, b)\) is in \(R \) and \((b, a)\) is not in \(R \).
Symmetric closure of \(R = R \cup \{ (3, 2), (1, 3) \} \)

Symmetric closure of \(R = R \cup R^{-1} \) (since \(R^{-1} = \{ (b, a) \mid (a, b) \in R \} \))

e.g.
\(R = \{(a, b) \mid a < b\} \)

Symmetric closure of \(R = R \cup R^{-1} \)
\[
= \{(a, b) \mid a < b\} \cup \{ (b, a) \mid a < b\}
= \{(a, b) \mid a \neq b\}
\]
Transitive Closure:

Let \(R = \{(1, 3), (1, 4), (2, 1), (3, 2)\} \) on \(\{1, 2, 3, 4\} \)

\(R \) is not transitive since there are pairs \((a, c) \notin R\) although \((a, b), (b, c) \in R\).

(i) \(R \cup \{(1, 2), (2, 3), (2, 4), (3, 1)\} \)

Is it transitive?
Transitive Closure:

Let $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$ on $\{1, 2, 3, 4\}$

R is not transitive since there are pairs $(a, c) \not\in R$ although $(a, b), (b, c) \in R.$

(i) $R \cup \{(1, 2), (2, 3), (2, 4), (3, 1)\}$

Is it transitive? NO!

It has $(3, 1), (1, 4),$ but not $(3, 4).$

We have a more difficult problem!!

We might repeat step (i) until reaching a transitive relation. But there are better ways.
e.g. Draw reflexive closure of

![Diagram showing reflexive closure]

How about symmetric closure? Transitive closure?
Paths in Directed Graphs

We now introduce a new terminology that we will use in the construction of transitive closures.

Definition:

A path from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), \ldots, (x_{n-1}, x_n)$ in G where $x_0 = a$ and $x_n = b$. This path is denoted by x_0, x_1, \ldots, x_n and has a length of n.

If $x_0 = x_n$, the path is called a cycle or circuit.

Two vertices are said to be connected if there’s a path between them.

e.g.

A path: a, b, d, a, c

a is connected to e, but e is not connected to a.

The term path also applies to relations.
Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

e.g.

```
A path:
  a, b, d, e
```

$(a, e) \in R^3$ since there is a path of length 3 between a and e.

![Diagram](image.png)
Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

e.g.

\[
\begin{array}{c}
\text{A path:} \\
a, b, d, e
\end{array}
\]

$(a, e) \in R^3$ since there is a path of length 3 between a and e.

But also $(a, e) \in R^6$ since there is also another path of length 6 between a and e: a, b, d, a, c, d, e
Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff $(a, b) \in R$. Hence true for $n = 1$.
Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff $(a, b) \in R$. Hence true for $n = 1$.

Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.

There is a path of length $n+1$ from a to b iff

$$\exists c \in A \text{ s. t. there is a path of length 1 from } a \text{ to } c \text{ and a path of length } n \text{ from } c \text{ to } b$$
Theorem: Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

Proof: Use induction.

Basis step: By definition there is a path of length 1 from a to b iff $(a, b) \in R$. Hence true for $n = 1$.

Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.

There is a path of length $n+1$ from a to b iff

$\exists c \in A \text{ s. t. there is a path of length 1 from } a \text{ to } c \text{ and a path of length } n \text{ from } c \text{ to } b$

that is, $\exists c \in A$ such that $(a, c) \in R$ and $(c, b) \in R^n$ (by inductive hypothesis)
Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^n$.

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff $(a, b) \in R$. Hence true for $n = 1$.

Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.

There is a path of length $n+1$ from a to b iff

$$\exists c \in A \text{ s. t. there is a path of length 1 from } a \text{ to } c \text{ and a path of length } n \text{ from } c \text{ to } b$$

that is, $\exists c \in A$ such that $(a, c) \in R$ and $(c, b) \in R^n$ (by inductive hypothesis)

which implies $(a, b) \in R^{n+1}$ (by definition of composite relation).

\[\therefore \text{ There is a path of length } n + 1 \text{ from } a \text{ to } b \text{ iff } (a, b) \in R^{n+1}\]
Transitive Closure:

Finding transitive closure is equivalent to determining vertices that are connected by a path.

Definition:
Let R be a relation on A.
Connectivity relation R^* consists of all pairs (a, b) s.t. there’s a path between a and b in R.

Since R^n includes all the paths of length n by the above theorem,

$$R^* = \bigcup_{n=1}^{\infty} R^n$$
Transitive Closure:

Finding transitive closure is equivalent to determining vertices that are **connected** by a path.

Definition:
Let R be a relation on A.
Connectivity relation R^* consists of all pairs (a, b) s.t. there’s a path between a and b in R.

Since R^n includes all the paths of length n by the above theorem,

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

* e.g.
Let R be a relation on the set of people in the world that contains (a,b) if a has met b.

R^2: ? if $(a, b) \in R^2$ then $\exists c$ s.t. $(a, c) \in R$ and $(c, b) \in R$

R^*: ? $(a, b) \in R^*$ if there is a sequence of people, starting with a and ending with b.
Theorem:
The transitive closure of a relation R equals to the connectivity relation R^*.
Theorem:
The transitive closure of a relation R equals to the connectivity relation R^*.

Proof:
We must show that, (i) R^* is transitive and (ii) any transitive relation that contains R contains also R^*.

Theorem:
The transitive closure of a relation R equals to the connectivity relation R^*.

Proof:
We must show that, (i) R^* is transitive and (ii) any transitive relation that contains R contains also R^*.

i. R^* is transitive?
If $(a, b) \in R^*$, there is a path from a to b.
If $(b, c) \in R^*$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^*$.

ii.
Theorem:
The transitive closure of a relation R equals to the connectivity relation R^*.

Proof:
We must show that, (i) R^* is transitive and (ii) any transitive relation that contains R contains also R^*.

i. R^* is transitive?
If $(a, b) \in R^*$, there is a path from a to b.
If $(b, c) \in R^*$, there is a path from b to c.
\therefore There is a path from a to c, which means $(a, c) \in R^*$.

ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^* \subseteq S$.
Theorem:
The transitive closure of a relation R equals to the connectivity relation R^*.
Proof:
We must show that, (i) R^* is transitive and (ii) any transitive relation that contains R contains also R^*.

i. R^* is transitive?
If $(a, b) \in R^*$, there is a path from a to b.
If $(b, c) \in R^*$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^*$.

ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^* \subseteq S$.
Since S is transitive, $S^n \subseteq S$ (by the theorem in Sec. 9.1)

$S^n \subseteq S$ and $S^* = \bigcup_{n=1}^{\infty} S^n \Rightarrow S^* \subseteq S$
\Rightarrow since $R \subseteq S$ (given), $R^* \subseteq S^* \subseteq S \Rightarrow R^* \subseteq S$.
Thus any transitive relation S that contains R contains also R^*.

66
Given R, how can we compute the connectivity relation R^*?

$$R^* = \bigcup_{n=1}^{\infty} R^n$$
Given R, how can we compute the connectivity relation R^*?

Lemma:
Let R be a relation in A and $|A| = n$. If there is a path from a to b in R, then one can always find a path from a to b with length not exceeding n.
Given \(R \), how can we compute the connectivity relation \(R^* \)?

Lemma:
Let \(R \) be a relation in \(A \) and \(|A| = n \). If there is a path from \(a \) to \(b \) in \(R \), then one can always find a path from \(a \) to \(b \) with length not exceeding \(n \).

Proof:
Suppose there is a path \(x_0, x_1, \ldots, x_m \) from \(x_0 = a \) to \(x_m = b \) with length \(m \).
If \(m > n \), then there are at least two vertices on this path, equal to each other \(x_i = x_j \) such that \(0 \leq i < j \leq m - 1 \). (by the pigeonhole principle)

We can cut this circuit and form a new path
\[
x_0, x_1, \ldots, x_i, x_{j+1}, \ldots, x_m
\]
If we do the same for all such two vertices, we get a path of length \(\leq n \).
Given R, how can we compute the connectivity relation R^*?

Lemma:
Let R be a relation in A and $|A| = n$. If there is a path from a to b in R, then one can always find a path from a to b with length not exceeding n.

Hence by the Lemma,

$$R^* = \bigcup_{k=1}^{\infty} R^k = \bigcup_{k=1}^{n} R^k$$